Size effect has been regularly utilized to tune the catalytic activity and selectivity of metal nanoparticles (NPs). Yet, there is a lack of understanding of the size effect in the electrocatalytic reduction of CO2, an important reaction that couples with intermittent renewable energy storage and carbon cycle utilization. We report here a prominent size-dependent activity/selectivity in the electrocatalytic reduction of CO2 over differently sized Pd NPs, ranging from 2.4 to 10.3 nm. The Faradaic efficiency for CO production varies from 5.8% at -0.89 V (vs reversible hydrogen electrode) over 10.3 nm NPs to 91.2% over 3.7 nm NPs, along with an 18.4-fold increase in current density. Based on the Gibbs free energy diagrams from density functional theory calculations, the adsorption of CO2 and the formation of key reaction intermediate COOH* are much easier on edge and corner sites than on terrace sites of Pd NPs. In contrast, the formation of H* for competitive hydrogen evolution reaction is similar on all three sites. A volcano-like curve of the turnover frequency for CO production within the size range suggests that CO2 adsorption, COOH* formation, and CO* removal during CO2 reduction can be tuned by varying the size of Pd NPs due to the changing ratio of corner, edge, and terrace sites.