0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trapping all ERBB ligands decreases pancreatic lesions in a murine model of pancreatic ductal adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of cancers. Attempts to develop targeted therapies still need to be established. Some oncogenic mechanisms in PDAC carcinogenesis harness the EGFR/ERBB receptor family. To explore the effects on pancreatic lesions, we attempted simultaneous blockade of all ERBB ligands in a PDAC mouse model. To this end, we engineered a molecular decoy, TRAP‐F C, comprising the ligand‐binding domains of both EGFR and ERBB4 and able to trap all ERBB ligands. Next, we generated a transgenic mouse model ( CBA TRAP/0 ) expressing TRAP‐F C ubiquitously under the control of the chicken‐beta‐actin promoter and crossed these mice with KRAS G12D/+ mice ( Kras) to generate Trap/Kras mice. The resulting mice displayed decreased emergence of spontaneous pancreatic lesion areas and exhibited reduced RAS activity and decreased activities of ERBBs, with the exception of ERBB4, which showed increased activity. To identify the involved receptor(s), we employed CRISPR/Cas9 DNA editing to singly delete each ERBB receptor in the human pancreatic carcinoma cell line Panc‐1. Ablation of each ERBB family member, especially the loss of EGFR or ERBB2/HER2, altered signaling downstream of the other three ERBB receptors and decreased cell proliferation, migration, and tumor growth. We conclude that simultaneously blocking the entire ERBB receptor family is therapeutically more effective than individually inhibiting only one receptor or ligand in terms of reducing pancreatic tumor burden. In summary, trapping all ERBB ligands can reduce pancreatic lesion area and RAS activity in a murine model of pancreatic adenocarcinoma; hence, it might represent a promising approach to treat PDAC in patients.

          Abstract

          An engineered decoy molecule, TRAP‐F C, was overexpressed in a mouse model for pancreatic ductal adenocarcinoma. The TRAP‐F C molecule, which comprises ligand‐binding domains of both EGFR and ERBB4, is able to trap all ERBB ligands. Mice overexpressing the decoy show significantly reduced pancreatic lesions and decreased EGFR and ERBB2 activation compared with control animals.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2018

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Cancer statistics, 2023

              Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.
                Bookmark

                Author and article information

                Contributors
                maik.dahlhoff@vetmeduni.ac.at
                Journal
                Mol Oncol
                Mol Oncol
                10.1002/(ISSN)1878-0261
                MOL2
                Molecular Oncology
                John Wiley and Sons Inc. (Hoboken )
                1574-7891
                1878-0261
                14 July 2023
                November 2023
                : 17
                : 11 ( doiID: 10.1002/mol2.v17.11 )
                : 2415-2431
                Affiliations
                [ 1 ] Institute of Molecular Animal Breeding and Biotechnology, Gene Center LMU München Germany
                [ 2 ] Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine LMU München Germany
                [ 3 ] Institute of in vivo and in vitro Models University of Veterinary Medicine Vienna Austria
                [ 4 ] Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel
                [ 5 ] Bugworks Research Inc, CCAMP Bengaluru India
                Author notes
                [*] [* ] Correspondence

                M. Dahlhoff, Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria

                Tel: +43 1 25077 2801

                Fax: +43 1 25077 2809

                E‐mail: maik.dahlhoff@ 123456vetmeduni.ac.at

                Author information
                https://orcid.org/0000-0001-9189-7631
                Article
                MOL213473 MOLONC-22-0826.R2
                10.1002/1878-0261.13473
                10620123
                37341059
                b10f72ec-5285-4aff-b0d1-45b9d0667065
                © 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 May 2023
                : 17 October 2022
                : 19 June 2023
                Page count
                Figures: 7, Tables: 0, Pages: 2431, Words: 10838
                Categories
                Pancreatic Cancer
                Model Organisms
                Signalling Proteins
                Ras Signalling
                Research Article
                Research Articles
                Custom metadata
                2.0
                November 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.4 mode:remove_FC converted:02.11.2023

                Oncology & Radiotherapy
                decoy molecule,egf‐family ligands,erbb receptors,kras,mouse model,panc‐1,pdac
                Oncology & Radiotherapy
                decoy molecule, egf‐family ligands, erbb receptors, kras, mouse model, panc‐1, pdac

                Comments

                Comment on this article