18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tumor necrosis factor-alpha inhibits follicle-stimulating hormone-induced differentiation in cultured rat granulosa cells.

      Biochemical and Biophysical Research Communications
      Animals, Cell Differentiation, drug effects, Cells, Cultured, Cholera Toxin, pharmacology, Colforsin, Cyclic AMP, metabolism, Female, Follicle Stimulating Hormone, Granulosa Cells, cytology, In Vitro Techniques, Progesterone, antagonists & inhibitors, Rats, Receptors, Gonadotropin, Receptors, LH, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have investigated the effects of TNF-alpha on FSH-induced LH receptor expression, cAMP and progesterone production in cultured rat granulosa cells. TNF-alpha (0.5-100 ng/ml) inhibits the stimulating action of FSH on LH receptor formation in a dose-dependent manner with an IC50 of 1 ng/ml and an almost complete suppression of LH receptor induction for 50-100 ng/ml TNF-alpha. The inhibitory effect of TNF-alpha is not due to variations in cell number or viability but rather to a reduction of the LH receptor content per cell with no change in binding affinity (KD = 0.8 x 10(-10)M). TNF-alpha also inhibits the FSH-induced cAMP production but at a lower extent, with a maximum reduction of 60% for 100 ng/ml TNF-alpha. Moreover, TNF-alpha impairs the LH receptor formation induced by forskolin, cholera toxin or 8-Bromo-cAMP, indicating that the cytokine also acts at a step distal to FSH receptor and to cAMP formation. Finally, TNF-alpha decreases dramatically the progesterone synthesis that is stimulated by FSH, with a reduction to undetectable levels on and after 10 ng/ml TNF-alpha. These results suggest that TNF-alpha may drastically reduce the capacity of granulosa cells to differentiate upon FSH stimulation and to respond to LH during the physiological ovarian follicular maturation. Such anti-gonadotropic action of TNF-alpha on granulosa cell differentiation may be also relevant to the alteration of ovarian function during physiopathological processes like inflammatory or infection diseases.

          Related collections

          Author and article information

          Comments

          Comment on this article