5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical anti-glomerular basement membrane glomerulonephritis in a patient with metastatic melanoma treated with mitogen-activated protein kinase and immune checkpoint inhibitors: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Immune checkpoint inhibitors and mitogen-activated protein kinase inhibitors have become the standard of care in patients with advanced melanoma bearing V600 mutations. However, little is known about their nephrotoxicity. To date, only two cases of anti-glomerular basement membrane glomerulonephritis after exposure to checkpoint inhibitors have been documented. Herein, we report the first case of a patient with metastatic melanoma who developed linear Immunoglobulin G 3+, Immunoglobulin A 2+, kappa 2+, lambda 1+ anti-glomerular basement membrane glomerulonephritis with negative serology following treatment with checkpoint inhibitors and subsequently mitogen-activated protein kinase inhibitors.

          Case presentation

          A 58-year-old Caucasian male was referred to our outpatient nephrology clinic with acute kidney injury and proteinuria. He had received three cycles of ipilimumab and nivolumab for recurrent melanoma positive for the BRAF V600E mutation with metastasis to the lungs. Immunotherapy had been discontinued in the setting of severe adverse effects including dermatitis, colitis, and hepatitis. Because of persistent bilateral lung metastases and left pleural metastases, the patient had been initiated on dabrafenib and trametinib until his presentation to our clinic 6 months later. On presentation, his blood pressure was 172/89 mm/Hg and had 2+ edema bilaterally. His creatinine level was 2.4 mg/dL from a previous normal baseline with a urinary protein-to-creatinine ratio of 2 g/g. His urinalysis showed dysmorphic erythrocytes and red blood cell casts. Serologic testing was negative for antineutrophilic cytoplasmic antibodies, proteinase 3 antigen, myeloperoxidase, and anti-glomerular basement membrane antibody. Complement levels were normal. A renal biopsy showed focal crescentic (2 of 15 glomeruli with cellular crescents), proliferative, and sclerosing glomerulonephritis with diffuse linear staining of glomerular capillary loops dominant for IgG (3+), IgA (2+), kappa (2+), and lambda (1+) minimal changes. He was initiated on oral cyclophosphamide and pulse intravenous methylprednisolone followed by oral prednisone for 6 months, which stabilized his renal function until reinitiation of immunotherapy.

          Conclusions

          Acute kidney injury is an increasingly reported adverse effect of both drug classes, mostly affecting the tubulointerstitial compartment and infrequently the glomerulus. Although the biologic effect of these drugs on immune cells is not entirely understood, it is possible that BRAF-induced podocyte injury in combination with direct T-cell-mediated glomerular injury facilitated by checkpoint inhibitors led to the unmasking of cryptic antigens, loss of self-tolerance, and autoimmunity. More importantly, we show that treatment with corticosteroids and cyclophosphamide was able to improve and stabilize our patient’s renal function until the reinitiation of immunotherapy.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Fundamental Mechanisms of Immune Checkpoint Blockade Therapy

          Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge.Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069-86. ©2018 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade

            Immune checkpoint blockade is able to achieve durable responses in a subset of patients, however we lack a satisfying comprehension of the underlying mechanisms of anti-CTLA-4 and anti-PD-1 induced tumor rejection. To address these issues we utilized mass cytometry to comprehensively profile the effects of checkpoint blockade on tumor immune infiltrates in human melanoma and murine tumor models. These analyses reveal a spectrum of tumor infiltrating T cell populations that are highly similar between tumor models and indicate that checkpoint blockade targets only specific subsets of tumor infiltrating T cell populations. Anti-PD-1 predominantly induces the expansion of specific tumor infiltrating exhausted-like CD8 T cell subsets. In contrast, anti-CTLA-4 induces the expansion of an ICOS + Th1-like CD4 effector population in addition to engaging specific subsets of exhausted-like CD8 T cells. Thus, our findings indicate that anti-CTLA-4 and anti-PD-1 checkpoint blockade induced immune responses are driven by distinct cellular mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells.

              Antitumor activity of CTLA-4 antibody blockade is thought to be mediated by interfering with the negative regulation of T-effector cell (Teff) function resulting from CTLA-4 engagement by B7-ligands. In addition, a role for CTLA-4 on regulatory T cells (Treg), wherein CTLA-4 loss or inhibition results in reduced Treg function, may also contribute to antitumor responses by anti-CTLA-4 treatment. We have examined the role of the immunoglobulin constant region on the antitumor activity of anti-CTLA-4 to analyze in greater detail the mechanism of action of anti-CTLA-4 antibodies. Anti-CTLA-4 antibody containing the murine immunoglobulin G (IgG)2a constant region exhibits enhanced antitumor activity in subcutaneous established MC38 and CT26 colon adenocarcinoma tumor models compared with anti-CTLA-4 containing the IgG2b constant region. Interestingly, anti-CTLA-4 antibodies containing mouse IgG1 or a mutated mouse IgG1-D265A, which eliminates binding to all Fcγ receptors (FcγR), do not show antitumor activity in these models. Assessment of Teff and Treg populations at the tumor and in the periphery showed that anti-CTLA-4-IgG2a mediated a rapid and dramatic reduction of Tregs at the tumor site, whereas treatment with each of the isotypes expanded Tregs in the periphery. Expansion of CD8(+) Teffs is observed with both the IgG2a and IgG2b anti-CTLA-4 isotypes, resulting in a superior Teff to Treg ratio for the IgG2a isotype. These data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs. ©2013 AACR.
                Bookmark

                Author and article information

                Contributors
                pkyriazi@bidmc.harvard.edu
                Journal
                J Med Case Rep
                J Med Case Rep
                Journal of Medical Case Reports
                BioMed Central (London )
                1752-1947
                3 April 2021
                3 April 2021
                2021
                : 15
                : 186
                Affiliations
                [1 ]GRID grid.266683.f, ISNI 0000 0001 2184 9220, Dept. of Internal Medicine, , University of Massachusetts Medical School -Baystate, ; Springfield, MA USA
                [2 ]GRID grid.266683.f, ISNI 0000 0001 2184 9220, Division of Nephrology, , University of Massachusetts Medical School -Baystate, ; Springfield, MA USA
                [3 ]GRID grid.266683.f, ISNI 0000 0001 2184 9220, Dept. of Pathology, , University of Massachusetts Medical School -Baystate, ; Springfield, MA USA
                Article
                2766
                10.1186/s13256-021-02766-w
                8019162
                33810799
                b1630efa-6054-4e8f-8a32-1c415a070c05
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 12 July 2020
                : 1 March 2021
                Categories
                Case Report
                Custom metadata
                © The Author(s) 2021

                Medicine
                atypical anti-gbm,immune checkpoint inhibitors,braf inhibitors,mek inhibitors
                Medicine
                atypical anti-gbm, immune checkpoint inhibitors, braf inhibitors, mek inhibitors

                Comments

                Comment on this article