13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza virus utilizes host splicing machinery to process viral mRNAs expressed from both M and NS segments. Through genetic analysis and functional characterization, we here show that the NS segment of H7N9 virus contains a unique G540A substitution, located within a previously undefined exonic splicing enhancer (ESE) motif present in the NEP mRNA of influenza A viruses. G540A supports virus replication in mammalian cells while retaining replication ability in avian cells. Host splicing regulator, SF2, interacts with this ESE to regulate splicing of NEP/NS1 mRNA and G540A substitution affects SF2–ESE interaction. The NS1 protein directly interacts with SF2 in the nucleus and modulates splicing of NS mRNAs during virus replication. We demonstrate that splicing of NEP/NS1 mRNA is regulated through a cis NEP-ESE motif and suggest a unique NEP-ESE may contribute to provide H7N9 virus with the ability to both circulate efficiently in avian hosts and replicate in mammalian cells.

          Abstract

          Some circulating avian influenza A viruses can infect humans, but the mechanism enabling species jump is poorly understood. Here, Huang et al. identify a nucleotide in NEP of avian H7N9 viruses that affects splicing efficiency of the NS segment and supports virus replication in avian and mammalian cells.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication.

            Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China.

              Constant surveillance of live poultry markets (LPMs) is currently the best way to predict and identify emerging avian influenza viruses (AIVs) that pose a potential threat to public health. Through surveillance of LPMs from 16 provinces and municipalities in China during 2014-2016, we identified 3,174 AIV-positive samples and isolated and sequenced 1,135 AIVs covering 31 subtypes. Our analysis shows that H5N6 has replaced H5N1 as one of the dominant AIV subtypes in southern China, especially in ducks. Phylogenetic analysis reveals that H5N6 arose from reassortments of H5 and H6N6 viruses, with the hemagglutinin and neuraminidase combinations being strongly lineage specific. H5N6 viruses constitute at least 34 distinct genotypes derived from various evolutionary pathways. Notably, genotype G1.2 virus, with internal genes from the chicken H9N2/H7N9 gene pool, was responsible for at least five human H5N6 infections. Our findings highlight H5N6 AIVs as potential threats to public health and agriculture.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                21 March 2017
                2017
                : 8
                : 14751
                Affiliations
                [1 ]State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong , Hong Kong SAR, China
                [2 ]Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong , Hong Kong SAR, China
                [3 ]National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361005, China
                [4 ]Department of Biotechnology, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
                Author notes
                Author information
                http://orcid.org/0000-0001-5108-8338
                Article
                ncomms14751
                10.1038/ncomms14751
                5364394
                28323816
                b1667bd5-7733-41d0-a018-2080c2813ef3
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 June 2016
                : 26 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article