3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of prognostic scores for inpatients with COVID-19: a retrospective monocentric cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The SARS-CoV-2 pandemic led to a steep increase in hospital and intensive care unit (ICU) admissions for acute respiratory failure worldwide. Early identification of patients at risk of clinical deterioration is crucial in terms of appropriate care delivery and resource allocation. We aimed to evaluate and compare the prognostic performance of Sequential Organ Failure Assessment (SOFA), Quick Sequential Organ Failure Assessment (qSOFA), Confusion, Uraemia, Respiratory Rate, Blood Pressure and Age ≥65 (CURB-65), Respiratory Rate and Oxygenation (ROX) index and Coronavirus Clinical Characterisation Consortium (4C) score to predict death and ICU admission among patients admitted to the hospital for acute COVID-19 infection.

          Methods and analysis

          Consecutive adult patients admitted to the Geneva University Hospitals during two successive COVID-19 flares in spring and autumn 2020 were included. Discriminative performance of these prediction rules, obtained during the first 24 hours of hospital admission, were computed to predict death or ICU admission. We further exluded patients with therapeutic limitations and reported areas under the curve (AUCs) for 30-day mortality and ICU admission in sensitivity analyses.

          Results

          A total of 2122 patients were included. 216 patients (10.2%) required ICU admission and 303 (14.3%) died within 30 days post admission. 4C score had the best discriminatory performance to predict 30-day mortality (AUC 0.82, 95% CI 0.80 to 0.85), compared with SOFA (AUC 0.75, 95% CI 0.72 to 0.78), qSOFA (AUC 0.59, 95% CI 0.56 to 0.62), CURB-65 (AUC 0.75, 95% CI 0.72 to 0.78) and ROX index (AUC 0.68, 95% CI 0.65 to 0.72). ROX index had the greatest discriminatory performance (AUC 0.79, 95% CI 0.76 to 0.83) to predict ICU admission compared with 4C score (AUC 0.62, 95% CI 0.59 to 0.66), CURB-65 (AUC 0.60, 95% CI 0.56 to 0.64), SOFA (AUC 0.74, 95% CI 0.71 to 0.77) and qSOFA (AUC 0.59, 95% CI 0.55 to 0.62).

          Conclusion

          Scores including age and/or comorbidities (4C and CURB-65) have the best discriminatory performance to predict mortality among inpatients with COVID-19, while scores including quantitative assessment of hypoxaemia (SOFA and ROX index) perform best to predict ICU admission. Exclusion of patients with therapeutic limitations improved the discriminatory performance of prognostic scores relying on age and/or comorbidities to predict ICU admission.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation

          The objective of this study was to develop a prospectively applicable method for classifying comorbid conditions which might alter the risk of mortality for use in longitudinal studies. A weighted index that takes into account the number and the seriousness of comorbid disease was developed in a cohort of 559 medical patients. The 1-yr mortality rates for the different scores were: "0", 12% (181); "1-2", 26% (225); "3-4", 52% (71); and "greater than or equal to 5", 85% (82). The index was tested for its ability to predict risk of death from comorbid disease in the second cohort of 685 patients during a 10-yr follow-up. The percent of patients who died of comorbid disease for the different scores were: "0", 8% (588); "1", 25% (54); "2", 48% (25); "greater than or equal to 3", 59% (18). With each increased level of the comorbidity index, there were stepwise increases in the cumulative mortality attributable to comorbid disease (log rank chi 2 = 165; p less than 0.0001). In this longer follow-up, age was also a predictor of mortality (p less than 0.001). The new index performed similarly to a previous system devised by Kaplan and Feinstein. The method of classifying comorbidity provides a simple, readily applicable and valid method of estimating risk of death from comorbid disease for use in longitudinal studies. Further work in larger populations is still required to refine the approach because the number of patients with any given condition in this study was relatively small.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study

              Abstract Objective To describe outcomes of people admitted to hospital with coronavirus disease 2019 (covid-19) in the United States, and the clinical and laboratory characteristics associated with severity of illness. Design Prospective cohort study. Setting Single academic medical center in New York City and Long Island. Participants 5279 patients with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection between 1 March 2020 and 8 April 2020. The final date of follow up was 5 May 2020. Main outcome measures Outcomes were admission to hospital, critical illness (intensive care, mechanical ventilation, discharge to hospice care, or death), and discharge to hospice care or death. Predictors included patient characteristics, medical history, vital signs, and laboratory results. Multivariable logistic regression was conducted to identify risk factors for adverse outcomes, and competing risk survival analysis for mortality. Results Of 11 544 people tested for SARS-Cov-2, 5566 (48.2%) were positive. After exclusions, 5279 were included. 2741 of these 5279 (51.9%) were admitted to hospital, of whom 1904 (69.5%) were discharged alive without hospice care and 665 (24.3%) were discharged to hospice care or died. Of 647 (23.6%) patients requiring mechanical ventilation, 391 (60.4%) died and 170 (26.2%) were extubated or discharged. The strongest risk for hospital admission was associated with age, with an odds ratio of >2 for all age groups older than 44 years and 37.9 (95% confidence interval 26.1 to 56.0) for ages 75 years and older. Other risks were heart failure (4.4, 2.6 to 8.0), male sex (2.8, 2.4 to 3.2), chronic kidney disease (2.6, 1.9 to 3.6), and any increase in body mass index (BMI) (eg, for BMI >40: 2.5, 1.8 to 3.4). The strongest risks for critical illness besides age were associated with heart failure (1.9, 1.4 to 2.5), BMI >40 (1.5, 1.0 to 2.2), and male sex (1.5, 1.3 to 1.8). Admission oxygen saturation of 1 (4.8, 2.1 to 10.9), C reactive protein level >200 (5.1, 2.8 to 9.2), and D-dimer level >2500 (3.9, 2.6 to 6.0) were, however, more strongly associated with critical illness than age or comorbidities. Risk of critical illness decreased significantly over the study period. Similar associations were found for mortality alone. Conclusions Age and comorbidities were found to be strong predictors of hospital admission and to a lesser extent of critical illness and mortality in people with covid-19; however, impairment of oxygen on admission and markers of inflammation were most strongly associated with critical illness and mortality. Outcomes seem to be improving over time, potentially suggesting improvements in care.
                Bookmark

                Author and article information

                Journal
                BMJ Open Respir Res
                BMJ Open Respir Res
                bmjresp
                bmjopenrespres
                BMJ Open Respiratory Research
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2052-4439
                2022
                24 August 2022
                24 August 2022
                : 9
                : 1
                : e001340
                Affiliations
                [1 ]departmentFaculty of Medicine , University of Geneva , Geneve, Switzerland
                [2 ]departmentDepartment of Medical Imaging and Medical Information Sciences , Geneva University Hospitals , Geneve, Switzerland
                [3 ]departmentDepartment of Medicine , Geneva University Hospitals , Geneve, Switzerland
                [4 ]departmentDivision of Clinical Epidemiology , Geneva University Hospitals , Geneve, Switzerland
                [5 ]departmentInfection Control Program , Geneva University Hospitals , Geneve, Switzerland
                Author notes
                [Correspondence to ] Dr Christophe Marti; christophe.marti@ 123456hcuge.ch
                Article
                bmjresp-2022-001340
                10.1136/bmjresp-2022-001340
                9412043
                36002181
                b1742550-da3a-476e-86f3-1828b7044269
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 21 June 2022
                : 07 August 2022
                Categories
                Respiratory Infection
                1506
                2474
                2229
                Custom metadata
                unlocked
                free

                covid-19
                covid-19

                Comments

                Comment on this article