36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specificity of Esthetic Experience for Artworks: An fMRI Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a previous functional magnetic resonance imaging (fMRI) study, where we investigated the neural correlates of esthetic experience, we found that observing canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a network that included the lateral occipital gyrus, precuneus, prefrontal areas, and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning hedonic response during esthetic experience. With the aim of exploring whether this specific hedonic response is also present during the observation of non-art biological stimuli, in the present fMRI study we compared the activations associated with viewing masterpieces of classical sculpture with those produced by the observation of pictures of young athletes. The two stimulus-categories were matched on various factors, including body postures, proportion, and expressed dynamism. The stimuli were presented in two conditions: observation and esthetic judgment. The two stimulus-categories produced a rather similar global activation pattern. Direct comparisons between sculpture and real-body images revealed, however, relevant differences, among which the activation of right antero-dorsal insula during sculptures viewing only. Along with our previous data, this finding suggests that the hedonic state associated with activation of right dorsal anterior insula underpins esthetic experience for artworks.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Interoception: the sense of the physiological condition of the body.

          Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subcortical and cortical brain activity during the feeling of self-generated emotions.

            In a series of [15O]PET experiments aimed at investigating the neural basis of emotion and feeling, 41 normal subjects recalled and re-experienced personal life episodes marked by sadness, happiness, anger or fear. We tested the hypothesis that the process of feeling emotions requires the participation of brain regions, such as the somatosensory cortices and the upper brainstem nuclei, that are involved in the mapping and/or regulation of internal organism states. Such areas were indeed engaged, underscoring the close relationship between emotion and homeostasis. The findings also lend support to the idea that the subjective process of feeling emotions is partly grounded in dynamic neural maps, which represent several aspects of the organism's continuously changing internal state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cortical region consisting entirely of face-selective cells.

              Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Research Foundation
                1662-5161
                18 November 2011
                2011
                : 5
                : 139
                Affiliations
                [1] 1simpleDepartment of Neuroscience, Università degli Studi di Parma Parma, Italy
                [2] 2simpleCenter for Cognitive Neuroscience and CERMAC, Vita-Salute San Raffaele University Milan, Italy
                [3] 3simpleBrain Center for Social and Motor Cognition, Italian Institute of Technology Parma, Italy
                Author notes

                Edited by: Idan Segev, The Hebrew University of Jerusalem, Israel

                Reviewed by: Bernd Weber, Rheinische-Friedrich-Wilhelms Universität, Germany; Philip D. Zelazo, University of Minnesota, USA; Son Preminger, Interdisciplinary Center Herzliya, Israel

                *Correspondence: Giacomo Rizzolatti, Department of Neuroscience, Università degli Studi di Parma, Via Volturno 39/E, 43100 Parma, Italy. e-mail: giacomo.rizzolatti@ 123456unipr.it
                Article
                10.3389/fnhum.2011.00139
                3220187
                22121344
                b18465cf-cfeb-4145-94a7-02366f0c1302
                Copyright © 2011 Di Dio, Canessa, Cappa and Rizzolatti.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 28 March 2011
                : 31 October 2011
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 41, Pages: 14, Words: 9888
                Categories
                Neuroscience
                Original Research

                Neurosciences
                human body,insula,sculpture,neuroesthetics
                Neurosciences
                human body, insula, sculpture, neuroesthetics

                Comments

                Comment on this article