27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arrhythmogenic Cardiomyopathy in a Patient With a Rare Loss‐of‐Function KCNQ1 Mutation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ventricular tachycardia (VT) is a common manifestation of advanced cardiomyopathies. In a subset of patients with dilated cardiomyopathy, VT is the initial and the cardinal manifestation of the disease. The molecular genetic basis of this subset of dilated cardiomyopathy is largely unknown.

          Methods and Results

          We identified 10 patients with dilated cardiomyopathy who presented with VT and sequenced 14 common causal genes for cardiomyopathies and arrhythmias. Functional studies included cellular patch clamp, confocal microscopy, and immunoblotting. We identified nonsynonymous variants in 4 patients, including a rare missense p.R397Q mutation in the KCNQ1 gene in a 60‐year‐old man who presented with incessant VT and had mild cardiac dysfunction. The p.R397Q mutation was absent in an ethnically matched control group, affected a conserved amino acid, and was predicted by multiple algorithms to be pathogenic. Co‐expression of the mutant KCNQ1 with its partner unit KCNE1 was associated with reduced tail current density of slowly activating delayed rectifier K + current (IKs). The mutation reduced membrane localization of the protein.

          Conclusions

          Dilated cardiomyopathy with an initial presentation of VT may be a forme fruste of arrhythmogenic cardiomyopathy caused by mutations in genes encoding the ion channels. The findings implicate KCNQ1 as a possible causal gene for arrhythmogenic cardiomyopathy.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          KCNQ1 gain-of-function mutation in familial atrial fibrillation.

          Atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming alpha subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium channels. Functional analysis of the S140G mutant revealed a gain-of-function effect on the KCNQ1/KCNE1 and the KCNQ1/KCNE2 currents, which contrasts with the dominant negative or loss-of-function effects of the KCNQ1 mutations previously identified in patients with long QT syndrome. Thus, the S140G mutation is likely to initiate and maintain AF by reducing action potential duration and effective refractory period in atrial myocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutation in the KCNQ1 gene leading to the short QT-interval syndrome.

            The electrocardiographic short QT-interval syndrome forms a distinct clinical entity presenting with a high rate of sudden death and exceptionally short QT intervals. The disorder has recently been linked to gain-of-function mutation in KCNH2. The present study demonstrates that this disorder is genetically heterogeneous and can also be caused by mutation in the KCNQ1 gene. A 70-year man presented with idiopathic ventricular fibrillation. Both immediately after the episode and much later, his QT interval was abnormally short without any other physical or electrophysiological anomalies. Analysis of candidate genes identified a g919c substitution in KCNQ1 encoding the K+ channel KvLQT1. Functional studies of the KvLQT1 V307L mutant (alone or coexpressed with the wild-type channel, in the presence of IsK) revealed a pronounced shift of the half-activation potential and an acceleration of the activation kinetics leading to a gain of function in I(Ks). When introduced in a human action potential computer model, the modified biophysical parameters predicted repolarization shortening. We present an alternative molecular mechanism for the short QT-interval syndrome. Functional and computational studies of the KCNQ1 V307L mutation identified in a patient with this disorder favor the association of short QT with mutation in KCNQ1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dominant missense mutations in ABCC9 cause Cantú syndrome.

              Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                January 2015
                23 January 2015
                : 4
                : 1
                : e001526
                Affiliations
                Cardiovascular Department, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Q.X., Q.Z., Y.S., J.Y., S.Y., K.H.)
                The Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Q.C., J.X., R.W., K.H.)
                Center for Cardiovascular Genetics at The University of Texas Health Science Center–Houston and Texas Heart Institute, Houston, TX (A.J.M.)
                Author notes
                Correspondence to: Ali J. Marian, MD, Center for Cardiovascular Genetics, 6700 Bertner Street, DAC900, Houston, TX 77030. E‐mail: Ali.J.Marian@ 123456uth.tmc.edu Kui Hong, MD, PhD, Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China. E‐mail: Hongkui88@ 123456163.com

                Dr Xiong and Dr Cao contributed equally to this work.

                Article
                jah3825
                10.1161/JAHA.114.001526
                4330077
                25616976
                b1c8c0b7-ce13-49cb-ba0b-13c635f0edaa
                © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 14 October 2014
                : 19 December 2014
                Categories
                Original Research
                Genetics

                Cardiovascular Medicine
                arrhythmias,cardiomyopathy,genetics,kcnq1,mutation,ventricular tachycardia
                Cardiovascular Medicine
                arrhythmias, cardiomyopathy, genetics, kcnq1, mutation, ventricular tachycardia

                Comments

                Comment on this article