6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Current and future influenza vaccines

      ,
      Nature Medicine
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence and pandemic potential of swine-origin H1N1 influenza virus.

          Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses.

            The intranasal inoculation of volunteers with living partially attenuated strains of influenza A and B viruses offers a new opportunity to determine the protective effect of serum haemagglutin-inhibiting antibody against a strictly homologous virus, under conditions where the time and dosage of the infective challenge can be controlled, the scoring of proven infections can be more precise and higher rates of infection can be achieved than in most natural epidemics.In 1032 adult volunteers, whose serum HI antibody titre was determined immediately before virus challenge, there was a consistent inverse quantitative relationship between the HI titre and the likelihood of infection. The PD 50 (50% protective dose) of HI antibody was 1/18-1/36, but an unusual finding was that volunteers with no detectable pre-challenge antibody often seem to be less susceptible to infection than those with pre-challenge antibody in low titre.In one group of volunteers challenged with an influenza B strain there was no evidence that pre-challenge antibody titres against viral neuraminidase had any significant protective effect against challenge infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type I and type II Fc receptors regulate innate and adaptive immunity.

              Antibodies produced in response to a foreign antigen are characterized by polyclonality, not only in the diverse epitopes to which their variable domains bind but also in the various effector molecules to which their constant regions (Fc domains) engage. Thus, the antibody's Fc domain mediates diverse effector activities by engaging two distinct classes of Fc receptors (type I and type II) on the basis of the two dominant conformational states that the Fc domain may adopt. These conformational states are regulated by the differences among antibody subclasses in their amino acid sequence and by the complex, biantennary Fc-associated N-linked glycan. Here we discuss the diverse downstream proinflammatory, anti-inflammatory and immunomodulatory consequences of the engagement of type I and type II Fc receptors in the context of infectious, autoimmune, and neoplastic disorders.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Nature
                1078-8956
                1546-170X
                January 28 2019
                Article
                10.1038/s41591-018-0340-z
                30692696
                b1eb9b0f-703c-4a14-b6dc-9b62729ed715
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article