0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Does Smoking Affect OSA? What about Smoking Cessation?

      , , , , , ,
      Journal of Clinical Medicine
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The connection between smoking and Obstructive sleep apnea (OSA) is not yet clear. There are studies that have confirmed the effect of smoking on sleep disordered breathing, whereas others did not. Nicotine affects sleep, as smokers have prolonged total sleep and REM latency, reduced sleep efficiency, total sleep time, and slow wave sleep. Smoking cessation has been related with impaired sleep. The health consequences of cigarette smoking are well documented, but the effect of smoking cessation on OSA has not been extensively studied. Smoking cessation should improve OSA as upper airway oedema may reduce, but there is limited data to support this hypothesis. The impact of smoking cessation pharmacotherapy on OSA has been studied, especially for nicotine replacement therapy (NRT). However, there are limited data on other smoking cessation medications as bupropion, varenicline, nortriptyline, clonidine, and cytisine. The aim of this review was to explore the current evidence on the association between smoking and OSA, to evaluate if smoking cessation affects OSA, and to investigate the possible effects of different pharmacologic strategies offered for smoking cessation on OSA.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Adult obstructive sleep apnoea.

          Obstructive sleep apnoea is an increasingly common disorder of repeated upper airway collapse during sleep, leading to oxygen desaturation and disrupted sleep. Features include snoring, witnessed apnoeas, and sleepiness. Pathogenesis varies; predisposing factors include small upper airway lumen, unstable respiratory control, low arousal threshold, small lung volume, and dysfunctional upper airway dilator muscles. Risk factors include obesity, male sex, age, menopause, fluid retention, adenotonsillar hypertrophy, and smoking. Obstructive sleep apnoea causes sleepiness, road traffic accidents, and probably systemic hypertension. It has also been linked to myocardial infarction, congestive heart failure, stroke, and diabetes mellitus though not definitively. Continuous positive airway pressure is the treatment of choice, with adherence of 60-70%. Bi-level positive airway pressure or adaptive servo-ventilation can be used for patients who are intolerant to continuous positive airway pressure. Other treatments include dental devices, surgery, and weight loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of sleep apnea.

            Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets.

              The pathophysiologic causes of obstructive sleep apnea (OSA) likely vary among patients but have not been well characterized. To define carefully the proportion of key anatomic and nonanatomic contributions in a relatively large cohort of patients with OSA and control subjects to identify pathophysiologic targets for future novel therapies for OSA. Seventy-five men and women with and without OSA aged 20-65 years were studied on three separate nights. Initially, the apnea-hypopnea index was determined by polysomnography followed by determination of anatomic (passive critical closing pressure of the upper airway [Pcrit]) and nonanatomic (genioglossus muscle responsiveness, arousal threshold, and respiratory control stability; loop gain) contributions to OSA. Pathophysiologic traits varied substantially among participants. A total of 36% of patients with OSA had minimal genioglossus muscle responsiveness during sleep, 37% had a low arousal threshold, and 36% had high loop gain. A total of 28% had multiple nonanatomic features. Although overall the upper airway was more collapsible in patients with OSA (Pcrit, 0.3 [-1.5 to 1.9] vs. -6.2 [-12.4 to -3.6] cm H2O; P <0.01), 19% had a relatively noncollapsible upper airway similar to many of the control subjects (Pcrit, -2 to -5 cm H2O). In these patients, loop gain was almost twice as high as patients with a Pcrit greater than -2 cm H2O (-5.9 [-8.8 to -4.5] vs. -3.2 [-4.8 to -2.4] dimensionless; P = 0.01). A three-point scale for weighting the relative contribution of the traits is proposed. It suggests that nonanatomic features play an important role in 56% of patients with OSA. This study confirms that OSA is a heterogeneous disorder. Although Pcrit-anatomy is an important determinant, abnormalities in nonanatomic traits are also present in most patients with OSA.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JCMOHK
                Journal of Clinical Medicine
                JCM
                MDPI AG
                2077-0383
                September 2022
                August 31 2022
                : 11
                : 17
                : 5164
                Article
                10.3390/jcm11175164
                36079094
                b1f03cbf-1033-4873-9746-6956f6a82752
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article