7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precipitation Concentration in Bangladesh over Different Temporal Periods

      1 , 2 , 1 , 2
      Advances in Meteorology
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Precipitation concentration is an important component of climate, and an unbalanced distribution of precipitation can yield excess or scarcity of water resources, which in turn can influence plant growth, flood risk, and water resource use. The precipitation concentration index (PCI) is a well-known indicator for the measurement of temporal precipitation in a short or long area. The purpose of this study was to analyze precipitation concentration rates in different regions of Bangladesh using the precipitation concentration index (PCI) and the inverse distance weighting method. In this study, the rainfall data from 30 meteorological observatory stations across Bangladesh were collected for the period 1980 to 2011. We defined periods of varying lengths (i.e., annual, supraseasonal, seasonal, and three- and two-month rainfall concentrations) and compared their PCI values. The results showed that precipitation concentrations were mostly irregular when rainfall was concentrated within two to four months of the year. Higher PCI values were mainly identified in the eastern region and have strong seasonal influences, whereas lower PCI values were mostly observed in the northern region. The analyses of periodic variation and precipitation in Bangladesh generally follow through the SW–NE direction due to the summer monsoon, while during the winter monsoon, they follow the N–S direction where JAS and JFM showed higher and lower PCI values. We observed variations in PCI among different regions using the Kruskal–Wallis test of the mean PCI on a decadal scale (1980–1989, 1990–1999, and 2000–2011). The result showed that significant changes in the precipitation occurred during the period of 1980–2011. At a two-month scale, significant changes were identified during transition periods where PCI values were lower from 2000 to 2011 than those in the earlier decades.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Constraints on future changes in climate and the hydrologic cycle.

          What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and changes in global precipitation patterns: what do we know?

            The objective of this paper is to synthesize the large literature recording changing patterns of precipitation in the observed data, thus indicating that climate change is already a reality. Such a synthesis is required not only for environmental researchers but also for policy makers. The key question is the broad picture at major regional and continental levels. Some interesting conclusions for this survey are emerging. For example, the review shows increased variance of precipitation everywhere. Consistent with this finding, we observe that wet areas become wetter, and dry and arid areas become more so. In addition, the following general changing pattern is emerging: (a) increased precipitation in high latitudes (Northern Hemisphere); (b) reductions in precipitation in China, Australia and the Small Island States in the Pacific; and (c) increased variance in equatorial regions. The changes in the major ocean currents also appear to be affecting precipitation patterns. For example, increased intensity and frequency of El Niño and ENSO seem associated with evidence of an observed "dipole" pattern affecting Africa and Asia, although this time series is too short so far. But the changing pattern calls for renewed efforts at adaptation to climate change, as the changing precipitation pattern will also affect the regional availability of food supply.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Objective Criteria for the Evaluation of Clustering Methods

                Bookmark

                Author and article information

                Journal
                Advances in Meteorology
                Advances in Meteorology
                Hindawi Limited
                1687-9309
                1687-9317
                November 22 2018
                November 22 2018
                : 2018
                : 1-18
                Affiliations
                [1 ]Department of Geography and Environment, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
                [2 ]Department of Geography, College of Social Science, Kongju National University, Singwan-Dong, Gongju-si, Chungnam-do 32588, Republic of Korea
                Article
                10.1155/2018/1849050
                b20a2826-4dfc-45d0-8168-7fcf812f2034
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article