4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multibreed genomic evaluation for production traits of dairy cattle in the United States using single-step genomic best linear unbiased predictor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient methods to compute genomic predictions.

          P VanRaden (2008)
          Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously. Algorithms were derived and computer programs tested with simulated data for 2,967 bulls and 50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding coefficients required accurate estimates of allele frequencies in the base population. Linear model predictions of breeding values were computed by 3 equivalent methods: 1) iteration for individual allele effects followed by summation across loci to obtain estimated breeding values, 2) selection index including a genomic relationship matrix, and 3) mixed model equations including the inverse of genomic relationships. A blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects. Reliability of predicted net merit for young bulls was 63% compared with 32% using the traditional relationship matrix. Nonlinear predictions were also computed using iteration on data and nonlinear regression on marker deviations; an additional (about 3%) gain in reliability for young bulls increased average reliability to 66%. Computing times increased linearly with number of genotypes. Estimation of allele frequencies required 2 processor days, and genomic predictions required <1 d per trait, and traits were processed in parallel. Information from genotyping was equivalent to about 20 daughters with phenotypic records. Actual gains may differ because the simulation did not account for linkage disequilibrium in the base population or selection in subsequent generations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score.

            The first national single-step, full-information (phenotype, pedigree, and marker genotype) genetic evaluation was developed for final score of US Holsteins. Data included final scores recorded from 1955 to 2009 for 6,232,548 Holsteins cows. BovineSNP50 (Illumina, San Diego, CA) genotypes from the Cooperative Dairy DNA Repository (Beltsville, MD) were available for 6,508 bulls. Three analyses used a repeatability animal model as currently used for the national US evaluation. The first 2 analyses used final scores recorded up to 2004. The first analysis used only a pedigree-based relationship matrix. The second analysis used a relationship matrix based on both pedigree and genomic information (single-step approach). The third analysis used the complete data set and only the pedigree-based relationship matrix. The fourth analysis used predictions from the first analysis (final scores up to 2004 and only a pedigree-based relationship matrix) and prediction using a genomic based matrix to obtain genetic evaluation (multiple-step approach). Different allele frequencies were tested in construction of the genomic relationship matrix. Coefficients of determination between predictions of young bulls from parent average, single-step, and multiple-step approaches and their 2009 daughter deviations were 0.24, 0.37 to 0.41, and 0.40, respectively. The highest coefficient of determination for a single-step approach was observed when using a genomic relationship matrix with assumed allele frequencies of 0.5. Coefficients for regression of 2009 daughter deviations on parent-average, single-step, and multiple-step predictions were 0.76, 0.68 to 0.79, and 0.86, respectively, which indicated some inflation of predictions. The single-step regression coefficient could be increased up to 0.92 by scaling differences between the genomic and pedigree-based relationship matrices with little loss in accuracy of prediction. One complete evaluation took about 2h of computing time and 2.7 gigabytes of memory. Computing times for single-step analyses were slightly longer (2%) than for pedigree-based analysis. A national single-step genetic evaluation with the pedigree relationship matrix augmented with genomic information provided genomic predictions with accuracy and bias comparable to multiple-step procedures and could account for any population or data structure. Advantages of single-step evaluations should increase in the future when animals are pre-selected on genotypes. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic selection: prediction of accuracy and maximisation of long term response.

              Genomic selection refers to the use of dense markers covering the whole genome to estimate the breeding value of selection candidates for a quantitative trait. This paper considers prediction of breeding value based on a linear combination of the markers. In this case the best estimate of each marker's effect is the expectation of the effect conditional on the data. To calculate this requires a prior distribution of marker effects. If the marker effects are normally distributed with constant variance, BLUP can be used to calculate the estimated effects of the markers and hence the estimated breeding value (EBV). In this case the model is equivalent to a conventional animal model in which the relationship matrix among the animals is estimated from the markers instead of the pedigree. The accuracy of the EBV can approach 1.0 but a very large amount of data is required. An alternative model was investigated in which only some markers have non-zero effects and these effects follow a reflected exponential distribution. In this case the expected effect of a marker is a non-linear function of the data such that apparently small effects are regressed back almost to zero and consequently these markers can be deleted from the model. The accuracy in this case is considerably higher than when marker effects are normally distributed. If genomic selection is practiced for several generations the response declines in a manner that can be predicted from the marker allele frequencies. Genomic selection is likely to lead to a more rapid decline in the selection response than phenotypic selection unless new markers are continually added to the prediction of breeding value. A method to find the optimum index to maximise long term selection response is derived. This index varies the weight given to a marker according to its frequency such that markers where the favourable allele has low frequency receive more weight in the index.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Dairy Science
                Journal of Dairy Science
                American Dairy Science Association
                00220302
                June 2022
                June 2022
                : 105
                : 6
                : 5141-5152
                Article
                10.3168/jds.2021-21505
                35282922
                b223c0a1-3ec6-48cb-955f-dfb33b4b26dd
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article