50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FMRI Reveals a Dissociation between Grasping and Perceiving the Size of Real 3D Objects

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Almost 15 years after its formulation, evidence for the neuro-functional dissociation between a dorsal action stream and a ventral perception stream in the human cerebral cortex is still based largely on neuropsychological case studies. To date, there is no unequivocal evidence for separate visual computations of object features for performance of goal-directed actions versus perceptual tasks in the neurologically intact human brain. We used functional magnetic resonance imaging to test explicitly whether or not brain areas mediating size computation for grasping are distinct from those mediating size computation for perception.

          Methodology/Principal Findings

          Subjects were presented with the same real graspable 3D objects and were required to perform a number of different tasks: grasping, reaching, size discrimination, pattern discrimination or passive viewing. As in prior studies, the anterior intraparietal area (AIP) in the dorsal stream was more active during grasping, when object size was relevant for planning the grasp, than during reaching, when object properties were irrelevant for movement planning (grasping>reaching). Activity in AIP showed no modulation, however, when size was computed in the context of a purely perceptual task (size = pattern discrimination). Conversely, the lateral occipital (LO) cortex in the ventral stream was modulated when size was computed for perception (size>pattern discrimination) but not for action (grasping = reaching).

          Conclusions/Significance

          While areas in both the dorsal and ventral streams responded to the simple presentation of 3D objects (passive viewing), these areas were differentially activated depending on whether the task was grasping or perceptual discrimination, respectively. The demonstration of dual coding of an object for the purposes of action on the one hand and perception on the other in the same healthy brains offers a substantial contribution to the current debate about the nature of the neural coding that takes place in the dorsal and ventral streams.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Separate visual pathways for perception and action.

          Accumulating neuropsychological, electrophysiological and behavioural evidence suggests that the neural substrates of visual perception may be quite distinct from those underlying the visual control of actions. In other words, the set of object descriptions that permit identification and recognition may be computed independently of the set of descriptions that allow an observer to shape the hand appropriately to pick up an object. We propose that the ventral stream of projections from the striate cortex to the inferotemporal cortex plays the major role in the perceptual identification of objects, while the dorsal stream projecting from the striate cortex to the posterior parietal region mediates the required sensorimotor transformations for visually guided actions directed at such objects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.

            We report that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength. The observed changes predominantly occur in areas containing gray matter and can be used to produce high-spatial-resolution functional brain maps in humans. Reducing the image-acquisition echo time from 40 msec to 8 msec reduces the amplitude of the fractional signal change, suggesting that it is produced by a change in apparent transverse relaxation time T*2. The amplitude, sign, and echo-time dependence of these intrinsic signal changes are consistent with the idea that neural activation increases regional cerebral blood flow and concomitantly increases venous-blood oxygenation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lateral occipital complex and its role in object recognition.

              Here we review recent findings that reveal the functional properties of extra-striate regions in the human visual cortex that are involved in the representation and perception of objects. We characterize both the invariant and non-invariant properties of these regions and we discuss the correlation between activation of these regions and recognition. Overall, these results indicate that the lateral occipital complex plays an important role in human object recognition.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2007
                9 May 2007
                : 2
                : 5
                : e424
                Affiliations
                [1]Department of Psychology, University or Western Ontario, London, Ontario, Canada
                University of Minnesota, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: culham@ 123456imaging.robarts.ca

                Conceived and designed the experiments: MG JC CC. Performed the experiments: CC. Analyzed the data: CC. Wrote the paper: MG JC CC.

                Article
                07-PONE-RA-00960
                10.1371/journal.pone.0000424
                1855433
                17487272
                b251a5d5-9fd1-419a-ac52-987df4ec3d57
                Cavina-Pratesi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 March 2007
                : 11 April 2007
                Page count
                Pages: 14
                Categories
                Research Article
                Neuroscience/Cognitive Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article