20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reversible adsorption and storage of secondary explosives from water using a Tröger's base-functionalised polymer

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A Tröger's base-derived covalent organic polymer ( TB-COP) was synthesised and used as an adsorbent for the reversible adsorption of picric acid from water.

          Abstract

          A Tröger's base-functionalised covalent organic polymer ( TB-COP) was synthesised and used as an adsorbent for the efficient removal of picric acid (PA) from water through the use of weak and reversible supramolecular interactions such as hydrogen bonding and π–π interactions. TB-COP was readily synthesised in quantitative yield using a one-pot metal-free polymerisation reaction strategy between a semi-flexible aromatic triamine [ L; benzene-1,3-5-tricarboxylic acid-tris-(4-amino-phenyl-amide)] and dimethoxymethane. The molecular structure, physicochemical and morphological characteristics of TB-COP were analysed by using various spectroscopic and imaging techniques. Thermogravimetric analysis showed TB-COP to be thermally stable up to 380 °C; while the calculated Brunauer–Emmett–Teller (BET) surface area was found to be 34 m 2 g −1 at 273 K. The picric acid adsorption study of the activated TB-COP showed an excellent adsorption capacity of ca. 90% within 60 minutes of contact time at 298 K (Langmuir isotherm model: K L = 0.0541 ± 6 L mg −1, R 2 = 0.9962); the adsorption efficiency being shown to improve with increasing temperature. The extraction of PA was also clearly visible to the naked eye, where the yellow colored PA solution became transparent upon addition of TB-COP. Other interfering phenolic organic pollutants showed poor to moderate adsorption efficiency. Importantly, TB-COP could be used to store PA over a long period of time in a safe manner, without any leakage or any significant loss in extraction efficiency. Moreover, the polymer could be reused for several adsorption cycles, as PA could be released back into the solution by simply changing the pH of the aqueous media. This makes TB-COP an extremely promising material for the selective and efficient removal of picric acid from water, and TB-COP can be considered as being a ‘fast’ and naked eye colorimetric indicator for such analytes.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Conjugated microporous polymers: design, synthesis and application.

          Conjugated microporous polymers (CMPs) are a class of organic porous polymers that combine π-conjugated skeletons with permanent nanopores, in sharp contrast to other porous materials that are not π-conjugated and with conventional conjugated polymers that are nonporous. As an emerging material platform, CMPs offer a high flexibility for the molecular design of conjugated skeletons and nanopores. Various chemical reactions, building blocks and synthetic methods have been developed and a broad variety of CMPs with different structures and specific properties have been synthesized, driving the rapid growth of the field. CMPs are unique in that they allow the complementary utilization of π-conjugated skeletons and nanopores for functional exploration; they have shown great potential for challenging energy and environmental issues, as exemplified by their excellent performance in gas adsorption, heterogeneous catalysis, light emitting, light harvesting and electrical energy storage. This review describes the molecular design principles of CMPs, advancements in synthetic and structural studies and the frontiers of functional exploration and potential applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water.

            Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal-organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5'-(4-carboxyphenyl)-2',4',6'-trimethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6',6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer-Emmett-Teller surface area of 3387 and 3948 m(2) g(-1), respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs represent excellent fluorescent properties, which can be efficiently quenched by trace amounts of nitrofurazone (NZF) and nitrofurantoin (NFT) antibiotics as well as 2,4,6-trinitrophenol (TNP) and 4-nitrophenol (4-NP) organic explosives in water solution. They are responsive to NZF and TNP at parts per billion (ppb) levels, which are among the best performing luminescent MOF-based sensing materials. Simultaneously, both MOFs also display high adsorption abilities toward these organic molecules. It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency. These results indicate that BUT-12 and -13 are favorable materials for the simultaneous selective detection and removal of specific antibiotics and organic explosives from water, being potentially useful in monitoring water quality and treating wastewater.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review.

              Efficient removal of hazardous materials from the environment has become an important issue from a biological and environmental standpoint. Adsorptive removal of toxic components from fuel, waste-water or air is one of the most attractive approaches for cleaning technologies. Recently, porous metal-organic framework (MOF) materials have been very promising in the adsorption/separation of various liquids and gases due to their unique characteristics. This review summarizes the recent literatures on the adsorptive removal of various hazardous compounds mainly from fuel, water, and air by virgin or modified MOF materials. Possible interactions between the adsorbates and active adsorption sites of the MOFs will be also discussed to understand the adsorption mechanism. Most of the observed results can be explained with the following mechanisms: (1) adsorption onto a coordinatively unsaturated site, (2) adsorption via acid-base interaction, (3) adsorption via π-complex formation, (4) adsorption via hydrogen bonding, (5) adsorption via electrostatic interaction, and (6) adsorption based on the breathing properties of some MOFs and so on.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2017
                2017
                : 5
                : 47
                : 25014-25024
                Affiliations
                [1 ]School of Chemistry
                [2 ]Trinity Biomedical Sciences Institute (TBSI)
                [3 ]Trinity College Dublin
                [4 ]The University of Dublin
                [5 ]Dublin 2
                [6 ]Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
                Article
                10.1039/C7TA07292A
                b26a1be4-33b9-4594-8632-6ae562e9dbaa
                © 2017

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article