3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of ESR1 Mutations Based on Liquid Biopsy in Estrogen Receptor-Positive Metastatic Breast Cancer: Clinical Impacts and Prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endocrine therapy is the main treatment option for estrogen receptor-positive (ER+) breast cancer (BC). Compared with other clinical subtypes, ER+ BC patients usually have a more favorable prognosis. However, almost all ER+ BCpatients develop endocrine resistance and disease progression eventually. A large number of studies based on liquid biopsy suggest that ESR1 mutations may play a key role in this process. For patients with ER+ metastatic BC (MBC), ESR1 is an important prognostic factor and may associate with the resistance to endocrine therapy, like aromatase inhibitors. The advances of sequencing technologies allow us to conduct longitudinal monitoring of disease and unveil the clinical implications of each ESR1 sub-clone in ER+ MBC. Moreover, since the ESR1-related endocrine resistance has not been fully addressed by existing agents, more potent cornerstone drugs should be developed as soon as possible. Herein, we reviewed the recent progress of detecting ESR1 mutations based on liquid biopsy and different sequencing technologies in ER+ MBC and discussed its clinical impacts and prospects.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Comprehensive molecular portraits of human breast tumors

          Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clonal evolution in cancer.

            Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex, with highly variable patterns of genetic diversity and resulting clonal architecture. Therapeutic intervention may destroy cancer clones and erode their habitats, but it can also inadvertently provide a potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer is the primary reason for this therapeutic failure, but it may also hold the key to more effective control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing

              As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPE) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                15 December 2020
                2020
                : 10
                : 587671
                Affiliations
                [1] 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute , Beijing, China
                [2] 2 Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center , Shenzhen, China
                [3] 3 Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing, China
                Author notes

                Edited by: Yi-Zhou Jiang, Fudan University, China

                Reviewed by: Yashodhara Dasgupta, Envision Pharma, United States; Praveen Vikas, University of Iowa Hospitals and Clinics, United States

                *Correspondence: Huiping Li, huipingli2012@ 123456hotmail.com

                †These authors have contributed equally to this work

                This article was submitted to Women's Cancer, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.587671
                7770162
                33384956
                b2afe1a0-1151-44a4-8f02-f0e7b4292117
                Copyright © 2020 Liao, Huang, Pei and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 July 2020
                : 17 November 2020
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 106, Pages: 9, Words: 4309
                Categories
                Oncology
                Mini Review

                Oncology & Radiotherapy
                endocrine therapy,esr1,estrogen receptor-positive metastatic breast cancer,liquid biopsy,sub-clone

                Comments

                Comment on this article