35
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trichosanthes kirilowii lectin alleviates diabetic nephropathy by inhibiting the LOX1/NF-κB/caspase-9 signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trichosanthes kirilowii lectin (TKL) has been reported to exert hypoglycemic effects in alloxan-induced diabetic mice. However, there is no evidence showing that it helps to prevent diabetic nephropathy (DN). We used a high glucose (HG)-induced HK-2 cell model and a streptozocin (STZ)-induced Wistar rat model to investigate the effects of TKL on DN, as well as the mechanisms for those effects. Our results showed that TKL significantly increased the viability of HG-treated HK-2 cells and inhibited cell apoptosis. In vivo experiments demonstrated that TKL attenuated STZ-induced histopathological damage and the inflammatory response in rat kidney tissues. Pre-treatment of HK-2 cells or STZ-treated rats with polyinosinic acid (Poly IC), an inhibitor of lectin-like oxLDL receptor 1 (LOX1), blocked the protective effect of TKL against HG- or STZ-induced damage to kidney tissue, indicating that TKL might exert its effect via LOX1-mediated endocytosis. Additional results suggested that TKL inhibits the phosphorylation of IκB kinase β (IKKβ) and the nuclear factor-κB (NF-κB) inhibitor protein (IκBα), and thereby reduces the nuclear translocation of NF-κB (p65). ChIP assay data indicated that TKL markedly inhibits the binding of p65 to the CASP9 gene in HG-treated HK-2 cells, subsequently suppressing transcription of the CASP9 gene. In the dual-luciferase reporter assay, TKL significantly inhibited luciferase activity in cells co-transfected with p65 and a wild-type capase-9 construct instead of mutated caspase-9 constructs.

          Taken together, our results show that TKL helps to protect against DN by inhibiting the LOX1/NF-κB/caspase-9 signaling pathway, suggesting TKL as a promising agent for treating DN.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inflammation in Diabetic Nephropathy

          Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial signaling in cell death via the Bcl-2 family.

            Apoptosis is a critical process for the maintenance of tissue homeostasis and prevention of tumorigenesis. The members of the Bcl-2 family of proteins are the central regulators of the intrinsic apoptotic pathway. Within the Bcl-2 family, the BH3-only subfamily of proteins is tasked with sensing a broad range of apoptotic stimuli and transmitting this signal to other Bcl-2 proteins to initiate programmed cell death. This family of proteins is highly regulated at both transcriptional and post-translational levels, as well as by prominent protein-protein interactions among the family members. Bcl-2 family proteins are often deregulated in cancer, with overexpression of antiapoptotic members, as well as mutations or defects in proapoptotic members. These proteins have been the subject of intensive study for many years and the complex relationships between their regulation and tumorigenesis have spawned a new thinking about cancer treatment. New generations of small molecule Bcl-2 family inhibitors and BH3 and SMAC mimetics have brought new optimism to the pursuit of more individualized and effective cancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective

              Diabetic nephropathy (DN) is the most serious microvascular complication of diabetes and the largest single cause of end-stage renal disease (ESRD) in many developed countries. DN is also associated with an increased cardiovascular mortality. It occurs as a result of interaction between both genetic and environmental factors. Hyperglycemia, hypertension, and genetic predisposition are the major risk factors. However, the exact mechanisms of DN are unclear. Despite the benefits derived from strict control of glucose and blood pressure, as well as inhibition of renin-angiotensin-aldosterone system, many patients continue to enter into ESRD. Thus, there is urgent need for improving mechanistic understanding of DN and then developing new and effective therapeutic approaches to delay the progression of DN. This review focuses on recent progress and future perspective about mechanistic insight and management of DN. Some preclinical relevant studies are highlighted and new perspectives of traditional Chinese medicine (TCM) for delaying DN progression are discussed in detail. These findings strengthen the therapeutic rationale for TCM in the treatment of DN and also provide new insights into the development of novel drugs for the prevention of DN. However, feasibility and safety of these therapeutic approaches and the clinical applicability of TCM in human DN need to be further investigated.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                23 July 2018
                07 September 2018
                31 October 2018
                : 38
                : 5
                : BSR20180071
                Affiliations
                [1 ]Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
                [2 ]Centers for Disease Early Treatment, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
                Author notes
                Correspondence: Guoliang Xiong ( szxiongguoliang@ 123456126.com ) or Shunmin Li ( zyylishunmin@ 123456163.com )
                Article
                10.1042/BSR20180071
                6127671
                30038056
                b2d290ab-26ab-41e8-a8bc-d917ae4beb96
                © 2018 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 14 January 2018
                : 05 July 2018
                : 13 July 2018
                Page count
                Pages: 17
                Categories
                Research Articles
                Research Article
                22
                45
                44
                41

                Life sciences
                caspase-9,diabetic nephropathy,hk-2 cells,nuclear factor kappab,trichosanthes kirilowii lectin

                Comments

                Comment on this article