137
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up.

          Methodology/Principal Findings

          We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group.

          Conclusions/Significance

          We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Malignant effusions and immunogenic tumour-derived exosomes.

          Exosomes derived from tumours are small vesicles released in vitro by tumour cell lines in culture supernatants. To assess the role of these exosomes in vivo, we examined malignant effusions for their presence. We also investigated whether these exosomes could induce production of tumour-specific T cells when pulsed with dendritic cells. We isolated exosomes by ultracentrifugation on sucrose and D(2)O gradients of 11 malignant effusions. We characterised exosomes with Western blot analyses, immunoelectron microscopy, and in-vitro stimulations of autologous T lymphocytes. Malignant effusions accumulate high numbers of membrane vesicles that have a mean diameter of 80 nm (SD 30). These vesicles have antigen-presenting molecules (MHC class-I heat-shock proteins), tetraspanins (CD81), and tumour antigens (Her2/Neu, Mart1, TRP, gp100). These criteria, including their morphological characteristics, indicate the similarities between these vesicles and exosomes. Exosomes from patients with melanoma deliver Mart1 tumour antigens to dendritic cells derived from monocytes (MD-DCs) for cross presentation to clones of cytotoxic T lymphocytes specific to Mart1. In seven of nine patients with cancer, lymphocytes specific to the tumour could be efficiently expanded from peripheral blood cells by pulsing autologous MD-DCs with autologous ascitis exosomes. In one patient tested, we successfully expanded a restricted T-cell repertoire, which could not be recovered carcinomatosis nodules. Exosomes derived from tumours accumulate in ascites from patients with cancer. Ascitis exosomes are a natural and new source of tumour-rejection antigens, opening up new avenues for immunisation against cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles.

            Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles

              The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                17 April 2009
                : 4
                : 4
                : e5219
                Affiliations
                [1 ]Unit of Antitumor Drugs, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
                [2 ]Unit of Molecular and Cellular Imaging, Istituto Superiore di Sanità, Rome, Italy
                [3 ]Division of Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
                [4 ]Unit of Experimental Immunotherapy, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
                [5 ]Unit of Melanoma and Sarcoma, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
                [6 ]Unit of Immunotherapy of Human Tumours, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
                [7 ]Unit of Cancer Bioimmunotherapy, Department of Medical Oncology, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
                Karolinska Institutet, Sweden
                Author notes

                Conceived and designed the experiments: ML ADM LL MP SF. Performed the experiments: ML LL MB MS MP CF DB GV. Analyzed the data: ML ADM LL LC CF EI MS MM LR SF. Contributed reagents/materials/analysis tools: ML LL MB LC MLM EI GV FL MS VH MM LR. Wrote the paper: ML ADM LL LC EI DB FL MS VH MM LR SF.

                Article
                08-PONE-RA-06945R2
                10.1371/journal.pone.0005219
                2667632
                19381331
                b2e8b972-c955-4349-a79d-b08b58fbce91
                Logozzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 October 2008
                : 19 March 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Cell Biology
                Oncology
                Cell Biology/Chemical Biology of the Cell
                Dermatology/Skin Cancers, including Melanoma and Lymphoma
                Oncology/Oncology Agents
                Oncology/Skin Cancers

                Uncategorized
                Uncategorized

                Comments

                Comment on this article