20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New World and Old World Alphaviruses Have Evolved to Exploit Different Components of Stress Granules, FXR and G3BP Proteins, for Assembly of Viral Replication Complexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis.

          Author Summary

          Many viruses encode proteins containing intrinsically disordered domains, whose functions are as yet unknown. Here we show that such a domain (HVD) in the alphavirus nsP3 protein orchestrates assembly of viral replication complexes through interaction with RNA-binding cellular factors. Surprisingly, geographically isolated viruses have evolved to utilize different cellular proteins: the nsP3 HVD of Venezuelan equine encephalitis virus (VEEV) binds all members of the FXR family, while nsP3 HVDs of Sindbis and chikungunya viruses interact with G3BP proteins. Despite being in different families, G3BPs and FXRs have similar domain organization, and assemble into higher order complexes, such as stress granules. Alphaviruses exploit their abilities for complex self-assembly and RNA binding to build RNA-containing pre-replication complexes. Using CRISPR/Cas9 mediated knockouts, we show that deletion of all homologs strongly affects virus replication, while knockout of a single FXR or G3BP homolog has no or mild effect. Our data suggest that an alphavirus HVD serves as a hub to recruit host factors for replication complex assembly and may determine virus adaptation to distinct cellular environments. Notably, the improved understanding of HVD interactions allows alphavirus replication to be switched from an FXR- to G3BP-dependent mode and opens new possibilities for development of antiviral therapeutics.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Stress granules: the Tao of RNA triage.

          Cytoplasmic RNA structures such as stress granules (SGs) and processing bodies (PBs) are functional byproducts of mRNA metabolism, sharing substrate mRNA, dynamic properties and many proteins, but also housing separate components and performing independent functions. Each can exist independently, but when coordinately induced they are often tethered together in a cytosolic dance. Although both self-assemble in response to stress-induced perturbations in translation, several recent reports reveal novel proteins and RNAs that are components of these structures but also perform other cellular functions. Proteins that mediate splicing, transcription, adhesion, signaling and development are all integrated with SG and PB assembly. Thus, these ephemeral bodies represent more than just the dynamic sorting of mRNA between translation and decay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of fragile X syndrome: a twenty-year perspective.

            Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is one of the leading known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeat in the 5' untranslated region of the X-linked gene FMR1. This expansion leads to DNA methylation of FMR1 and to transcriptional silencing, which results in the absence of the gene product, FMRP, a selective messenger RNA (mRNA)-binding protein that regulates the translation of a subset of dendritic mRNAs. FMRP is critical for mGluR (metabotropic glutamate receptor)-dependent long-term depression, as well as for other forms of synaptic plasticity; its absence causes excessive and persistent protein synthesis in postsynaptic dendrites and dysregulated synaptic function. Studies continue to refine our understanding of FMRP's role in synaptic plasticity and to uncover new functions of this protein, which have illuminated therapeutic approaches for FXS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrodomains: Structure, Function, Evolution, and Catalytic Activities.

              Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                10 August 2016
                August 2016
                : 12
                : 8
                : e1005810
                Affiliations
                [1 ]Department of Microbiology, University of Alabama at Birmingham, Alabama, United States of America
                [2 ]Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [3 ]Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [4 ]Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                University of North Carolina at Chapel Hill, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: IF EIF.

                • Performed the experiments: DYK JMR AR IA JAM IF EIF.

                • Analyzed the data: DYK JMR IA JAM IF EIF.

                • Wrote the paper: IF EIF.

                Article
                PPATHOGENS-D-16-00757
                10.1371/journal.ppat.1005810
                4980055
                27509095
                b2f68499-1ab0-430d-94be-9943fe899f38
                © 2016 Kim et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 April 2016
                : 13 July 2016
                Page count
                Figures: 8, Tables: 0, Pages: 31
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI118867
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R56AI091705
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI095449
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI070207
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI119627
                Award Recipient :
                This work was supported by the NIH grants: R01AI118867 and R56AI091705 to EIF; R01AI095449, R01AI070207 and R21AI119627 to IF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Research and analysis methods
                Chemical synthesis
                Biosynthetic techniques
                Nucleic acid synthesis
                RNA synthesis
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA synthesis
                Research and analysis methods
                Biological cultures
                Cell lines
                NIH 3T3 cells
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Chikungunya Infection
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Chikungunya Infection
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Togaviruses
                Alphaviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                dsRNA viruses
                Custom metadata
                All relevant data are provided within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article