3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Controlled induction of immune tolerance by mesenchymal stem cells transferred by maternal microchimerism

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero.

          As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α.

            Platelet-derived growth factor receptor α (PDGFR-α) and stem cell antigen 1 (Sca-1) have recently been identified as selective markers of mouse mesenchymal stem cells (MSCs). PDGFR-α(+)Sca-1(+) (PαS) MSCs have augmented growth potential and robust tri-lineage differentiation compared with standard culture-selected MSCs. In addition, the selective isolation of PαS MSCs avoids cellular contamination that can complicate other methods. Here we describe in detail our protocol to isolate PαS MSCs using flow cytometry. In brief, the tibia and femora are isolated and crushed using a pestle and mortar. The crushed bones are then chopped and incubated for 1 h at 37 °C in 20 ml of DMEM containing 0.2% (wt/vol) collagenase. The cell suspension is filtered before red blood cell lysis and incubated with the following antibodies: allophycocyanin (APC)-conjugated PDGFR-α, FITC-conjugated Sca-1, phycoerythrin (PE)-conjugated CD45 and Ter119. Appropriate gates are constructed on a cell sorter to exclude dead cells and lineage (CD45(+)Ter-119(+))-positive cells. Approximately 10,000 PαS MSCs may then be isolated per mouse. The total protocol takes ~7 h to complete.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunological implications of pregnancy-induced microchimerism

              This Review discusses how genetically discordant microchimeric cells transferred between a mother and her offspring during pregnancy have important implications for definitions of immunological identity and tolerance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biochemical and Biophysical Research Communications
                Biochemical and Biophysical Research Communications
                Elsevier BV
                0006291X
                February 2021
                February 2021
                : 539
                : 83-88
                Article
                10.1016/j.bbrc.2020.12.032
                b335765c-c147-45ba-9e07-82a008440006
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article