37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During its transport to the bacterial surface, the phosphate groups of the lipid A anchor of Escherichia coli and Salmonella lipopolysaccharide are modified by membrane enzymes including ArnT, EptA and LpxT. ArnT and EptA catalyse the periplasmic addition of the positively charged substituents 4-amino-4-deoxy-L-arabinose and phosphoethanolamine respectively. These modifications are controlled by the PmrA transcriptional regulator and confer resistance to cationic antimicrobial peptides, including polymyxin. LpxT, however, catalyses the phosphorylation of lipid A at the 1-position forming 1-diphosphate lipid A increasing the negative charge of the bacterial surface. Here, we report that PmrA is involved in the regulation of LpxT. Interestingly, this regulation does not occur at the level of transcription, but rather following the assembly of LpxT into the inner membrane. PmrA-dependent inhibition of LpxT is required for phosphoethanolamine decoration of lipid A, which is shown here to be critical for E. coli to resist the bactericidal activity of polymyxin. Furthermore, although Salmonella lipid A is more prevalently modified with l-4-aminoarabinose, we demonstrate that loss of Salmonella lpxT greatly increases EptA modification. The current work is an example of the complexities associated with the structural remodelling of Gram-negative lipopolysaccharides promoting bacterial survival.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid A modification systems in gram-negative bacteria.

            The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.

              Migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that does not correlate with formula molecular weights, termed "gel shifting," appears to be common for membrane proteins but has yet to be conclusively explained. In the present work, we investigate the anomalous gel mobility of helical membrane proteins using a library of wild-type and mutant helix-loop-helix ("hairpin") sequences derived from transmembrane segments 3 and 4 of the human cystic fibrosis transmembrane conductance regulator (CFTR), including disease-phenotypic residue substitutions. We find that these hairpins migrate at rates of -10% to +30% vs. their actual formula weights on SDS-PAGE and load detergent at ratios ranging from 3.4-10 g SDS/g protein. We additionally demonstrate that mutant gel shifts strongly correlate with changes in hairpin SDS loading capacity (R(2) = 0.8), and with hairpin helicity (R(2) = 0.9), indicating that gel shift behavior originates in altered detergent binding. In some cases, this differential solvation by SDS may result from replacing protein-detergent contacts with protein-protein contacts, implying that detergent binding and folding are intimately linked. The CF-phenotypic V232D mutant included in our library may thus disrupt CFTR function via altered protein-lipid interactions. The observed interdependence between hairpin migration, SDS aggregation number, and conformation additionally suggests that detergent binding may provide a rapid and economical screen for identifying membrane proteins with robust tertiary and/or quaternary structures.
                Bookmark

                Author and article information

                Journal
                Mol Microbiol
                mmi
                Molecular Microbiology
                Blackwell Publishing Ltd
                0950-382X
                1365-2958
                June 2010
                09 April 2010
                : 76
                : 6
                : 1444-1460
                Affiliations
                [1 ]simpleSection of Molecular Genetics and Microbiology, The University of Texas at Austin Austin, TX 78712, USA
                [3 ]simpleThe Institute of Cellular and Molecular Biology, The University of Texas at Austin Austin, TX 78712, USA
                [2 ]simpleDepartment of Biochemistry and Molecular Biology, Medical College of Georgia Augusta, Georgia, 30912, USA
                Author notes
                *E-mail strent@ 123456mail.utexas.edu ; Tel. (+1) 512 232 8371; Fax (+1) 512 471 7088.

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html

                Article
                10.1111/j.1365-2958.2010.07150.x
                2904496
                20384697
                b33d85f2-c60d-4580-838b-7a2de972e267
                © 2010 Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 20 March 2010
                Categories
                Research Articles

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article