1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Membrane Axis of Alzheimer's Nanomedicine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.

          It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid beta-peptide (Abeta) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Abeta in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Abeta production and Abeta clearance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

            Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer Disease: An Update on Pathobiology and Treatment Strategies

              Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular amyloid-β deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remain the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease modifying treatment currently exists and numerous phase 3 clinical trials have failed to demonstrate benefit. We review here recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease modifying therapies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced NanoBiomed Research
                Adv NanoBio Res
                Wiley
                2699-9307
                2699-9307
                January 2021
                December 08 2020
                January 2021
                : 1
                : 1
                : 2000040
                Affiliations
                [1 ]Zhongshan Hospital Fudan University 111 Yixueyuan Road Xuhui District Shanghai 200032 China
                [2 ]ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
                [3 ]Department of Physics and Astronomy Clemson University Clemson SC 29634 USA
                [4 ]Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
                [5 ]Department of Chemical and Pharmaceutical Science University of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
                Article
                10.1002/anbr.202000040
                b3436011-f64e-4127-a93b-c52ca795d8b3
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article