16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads.

          High-volume sequencing of DNA and RNA is now within reach of any research laboratory and is quickly becoming established as a key research tool. In many workflows, each of the short sequences ("reads") resulting from a sequencing run are first "mapped" (aligned) to a reference sequence to infer the read from which the genomic location derived, a challenging task because of the high data volumes and often large genomes. Existing read mapping software excel in either speed (e.g., BWA, Bowtie, ELAND) or sensitivity (e.g., Novoalign), but not in both. In addition, performance often deteriorates in the presence of sequence variation, particularly so for short insertions and deletions (indels). Here, we present a read mapper, Stampy, which uses a hybrid mapping algorithm and a detailed statistical model to achieve both speed and sensitivity, particularly when reads include sequence variation. This results in a higher useable sequence yield and improved accuracy compared to that of existing software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

            Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen sulfide and cell signaling.

              Hydrogen sulfide (H₂S) is a gaseous mediator synthesized from cysteine by cystathionine γ lyase (CSE) and other naturally occurring enzymes. Pharmacological experiments using H₂S donors and genetic experiments using CSE knockout mice suggest important roles for this vasodilator gas in the regulation of blood vessel caliber, cardiac response to ischemia/reperfusion injury, and inflammation. That H₂S inhibits cytochrome c oxidase and reduces cell energy production has been known for many decades, but more recently, a number of additional pharmacological targets for this gas have been identified. H₂S activates K(ATP) and transient receptor potential (TRP) channels but usually inhibits big conductance Ca²(+)-sensitive K(+) (BK(Ca)) channels, T-type calcium channels, and M-type calcium channels. H₂S may inhibit or activate NF-κB nuclear translocation while affecting the activity of numerous kinases including p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt. These disparate effects may be secondary to the well-known reducing activity of H₂S and/or its ability to promote sulfhydration of protein cysteine moieties within the cell.
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley-Blackwell
                09621083
                November 2017
                November 10 2017
                : 26
                : 22
                : 6384-6399
                Article
                10.1111/mec.14360
                28926156
                b36103f5-a4c9-47dd-887f-b8c3efb003b3
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article