5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying Morphological Patterns of Hippocampal Atrophy in Patients With Mesial Temporal Lobe Epilepsy and Alzheimer Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: Mesial temporal lobe epilepsy (MTLE) and Alzheimer's disease (AD) are two distinct neurological disorders associated with hippocampal atrophy. Our goal is to analyze the morphologic patterns of hippocampal atrophy to better understand the underlying pathological and clinical characteristics of the two conditions.

          Methods: Twenty-five patients with AD and 20 healthy controls with matched age and gender were recruited into the AD group. Twenty-three MTLE patients and 28 healthy controls with matched age and gender were recruited into the MTLE group. All subjects were scanned on 3T-MRI scanner. Automated volumetric analysis was applied to measure and compare the hippocampal volume of the two respective groups. Vertex-based morphologic analysis was applied to characterize the morphologic patterns of hippocampal atrophy within and between groups, and a correlation analysis was performed.

          Results: Volumetric analysis revealed significantly decreased hippocampal volume in both AD and MTLE patients compared to the controls. In the patients with AD, the mean total hippocampal volume was 32.70% smaller than that of healthy controls, without a significant difference between the left and the right hippocampus ( p < 0.05). In patients with MTLE, a significant reduction in unilateral hippocampal volume was observed, with a mean volume reduction of 28.38% as compared with healthy controls ( p < 0.05). Vertex-based morphologic analysis revealed a generalized shrinkage of the hippocampi in AD patients, especially in bilateral medial and lateral regions. In MTLE group, atrophy was seen in the ipsilateral head, ipsilateral lateral body and slightly contralateral tail of the hippocampus (FWE-corrected, p < 0.05).

          Conclusions: MTLE and AD have distinctive morphologic patterns of hippocampal atrophy, which provide new insight into the radiology-pathology correlation in these diseases.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Review: Hippocampal sclerosis in epilepsy: a neuropathology review

          Maria Thom (2014)
          Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study.

            Three subtypes of Alzheimer's disease (AD) have been pathologically defined on the basis of the distribution of neurofibrillary tangles: typical AD, hippocampal-sparing AD, and limbic-predominant AD. Compared with typical AD, hippocampal-sparing AD has more neurofibrillary tangles in the cortex and fewer in the hippocampus, whereas the opposite pattern is seen in limbic-predominant AD. We aimed to determine whether MRI patterns of atrophy differ between these subtypes and whether structural neuroimaging could be a useful predictor of pathological subtype at autopsy. We identified patients who had been followed up in the Mayo Clinic Alzheimer's Disease Research Center (Rochester, MN, USA) or in the Alzheimer's Disease Patient Registry (Rochester, MN, USA) between 1992 and 2005. To be eligible for inclusion, participants had to have had dementia, AD pathology at autopsy (Braak stage ≥IV and intermediate to high probability of AD), and an ante-mortem MRI. Cases were assigned to one of three pathological subtypes--hippocampal-sparing, limbic-predominant, and typical AD--on the basis of neurofibrillary tangle counts in hippocampus and cortex and ratio of hippocampal to cortical burden, without reference to neuronal loss. Voxel-based morphometry and atlas-based parcellation were used to compare patterns of grey matter loss between groups and with age-matched control individuals. Neuroimaging was obtained at the time of first presentation. To summarise pair-wise group differences, we report the area under the receiver operator characteristic curve (AUROC). Of 177 eligible patients, 125 (71%) were classified as having typical AD, 33 (19%) as having limbic-predominant AD, and 19 (11%) as having hippocampal-sparing AD. Most patients with typical (98 [78%]) and limbic-predominant AD (31 [94%]) initially presented with an amnestic syndrome, but fewer patients with hippocampal-sparing AD (eight [42%]) did. The most severe medial temporal atrophy was recorded in patients with limbic-predominant AD, followed by those with typical disease, and then those with hippocampal-sparing AD. Conversely, the most severe cortical atrophy was noted in patients with hippocampal-sparing AD, followed by those with typical disease, and then limbic-predominant AD. The ratio of hippocampal to cortical volumes allowed the best discrimination between subtypes (p<0·0001; three-way AUROC 0·52 [95% CI 0·47-0·52]; ratio of AUROC to chance classification 3·1 [2·8-3·1]). Patients with typical AD and non-amnesic initial presentation had a significantly higher ratio of hippocampal to cortical volumes (median 0·045 [IQR 0·035-0·056]) than did those with an amnesic presentation (0·041 [0·031-0·057]; p=0·001). Patterns of atrophy on MRI differ across the pathological subtypes of AD. MRI regional volumetric analysis can reliably track the distribution of neurofibrillary tangle pathology and can predict pathological subtype of AD at autopsy. US National Institutes of Health (National Institute on Aging). Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silent Hippocampal Seizures and Spikes Identified by Foramen Ovale Electrodes in Alzheimer’s Disease

              We directly assessed mesial temporal activity in two Alzheimer’s disease (AD) patients without a history or EEG evidence of seizures, using intracranial foramen ovale electrodes. We detected clinically silent hippocampal seizures and epileptiform spikes during sleep, a period when both were most likely to interfere with memory consolidation. These index cases support a model in which early development of occult hippocampal hyperexcitability may contribute to the pathogenesis of AD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                23 January 2020
                2020
                : 11
                : 21
                Affiliations
                [1] 1Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
                [2] 2Division of Pulmonary Medicine, Boston Children's Hospital , Boston, MA, United States
                [3] 3Harvard Medical School , Boston, MA, United States
                [4] 4Beijing Key Laboratory of Neuromodulation , Beijing, China
                [5] 5Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University , Beijing, China
                Author notes

                Edited by: Andrea Romigi, Mediterranean Neurological Institute (IRCCS), Italy

                Reviewed by: Keith Vossel, University of Minnesota Twin Cities, United States; Jose Eduardo Peixoto-Santos, Federal University of São Paulo, Brazil

                *Correspondence: Yicong Lin linyc_1@ 123456163.com

                This article was submitted to Epilepsy, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.00021
                6989594
                32038474
                b38eab9b-bd05-408b-9bfd-6d0e445e6263
                Copyright © 2020 Duan, Lin, Rosen, Du, He and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 November 2018
                : 08 January 2020
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 57, Pages: 9, Words: 5853
                Funding
                Funded by: Beijing Municipal Science and Technology Commission 10.13039/501100009592
                Funded by: Beijing Municipal Education Commission 10.13039/501100003213
                Categories
                Neurology
                Original Research

                Neurology
                hippocampus,mesial temporal lobe epilepsy,alzheimer's disease,volumetric analysis,morphologic analysis

                Comments

                Comment on this article