93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of the testa during development and in establishment of dormancy of the legume seed

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          Seed dormancy and the control of germination.

          Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana.

            Genetic analyses have demonstrated that together with TTG1, a WD-repeat (WDR) protein, TT2 (MYB), and TT8 (bHLH) are necessary for the correct expression of BANYULS (BAN). This gene codes for the core enzyme of proanthocyanidin biosynthesis in Arabidopsis thaliana seed coat. The interplays of TT2, TT8, and their closest MYB/bHLH relatives, with TTG1 and the BAN promoter have been investigated using a combination of genetic and molecular approaches, both in yeast and in planta. The results obtained using glucocorticoid receptor fusion proteins in planta strongly suggest that TT2, TT8, and TTG1 can directly activate BAN expression. Experiments using yeast two- and three-hybrid clearly demonstrated that TT2, TT8, and TTG1 can form a stable ternary complex. Furthermore, although TT2 and TT8 were able to bind to the BAN promoter when simultaneously expressed in yeast, the activity of the complex correlated with the level of TTG1 expression in A. thaliana protoplasts. In addition, transient expression experiments revealed that TTG1 acts mainly through the bHLH partner (i.e. TT8 or related proteins) and that TT2 cannot be replaced by any other related A. thaliana MYB proteins to activate BAN. Finally and consistent with these results, the ectopic expression of TT2 was sufficient to trigger BAN activation in vegetative parts, but only where TTG1 was expressed. Taken together, these results indicate that TT2, TT8, and TTG1 can form a ternary complex directly regulating BAN expression in planta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proanthocyanidins--a final frontier in flavonoid research?

              Proanthocyanidins are oligomeric and polymeric end products of the flavonoid biosynthetic pathway. They are present in the fruits, bark, leaves and seeds of many plants, where they provide protection against predation. At the same time they give flavor and astringency to beverages such as wine, fruit juices and teas, and are increasingly recognized as having beneficial effects on human health. The presence of proanthocyanidins is also a major quality factor for forage crops. The past 2 years have seen important breakthroughs in our understanding of the biosynthesis of the building blocks of proanthocyanidins, the flavan-3-ols (+)-catechin and (-)-epicatechin. However, virtually nothing is known about the ways in which these units are assembled into the corresponding oligomers in vivo. Molecular genetic approaches are leading to an understanding of the regulatory genes that control proanthocyanidin biosynthesis, and this information, together with increased knowledge of the enzymes specific for the pathway, will facilitate the genetic engineering of plants for introduction of value-added nutraceutical and forage quality traits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                17 July 2014
                2014
                : 5
                : 351
                Affiliations
                [1] 1Department of Botany, Faculty of Sciences, Palacký University in Olomouc Olomouc, Czech Republic
                [2] 2INRA, UMR 1347 Agroécologie Dijon, France
                [3] 3Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
                [4] 4Department of Experimental Plant Biology, Charles University Prague, Czech Republic
                Author notes

                Edited by: Paolo Sabelli, University of Arizona, USA

                Reviewed by: Françoise CORBINEAU, Université Pierre et Marie Curie, France; Carol C. Baskin, University of Kentucky, USA

                *Correspondence: Petr Smýkal, Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Šlechtitelů 11, 783 71 Olomouc, Czech Republic e-mail: petr.smykal@ 123456upol.cz

                This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00351
                4102250
                25101104
                b3a39e92-8952-4e91-99c4-f005d90f8f58
                Copyright © 2014 Smýkal, Vernoud, Blair, Soukup and Thompson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2014
                : 30 June 2014
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 251, Pages: 19, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                domestication,dormancy,hardseededness,legumes,proanthocyanidins,seed coat,testa,water permeability

                Comments

                Comment on this article