3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Using large scale structure to measure\({f}_{\mathrm{NL}}\),\({g}_{\mathrm{NL}}\)and$ {\tau }_{\mathrm{NL}}$

      ,
      Physical Review D
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects

          We study the effect of primordial nongaussianity on large-scale structure, focusing upon the most massive virialized objects. Using analytic arguments and N-body simulations, we calculate the mass function and clustering of dark matter halos across a range of redshifts and levels of nongaussianity. We propose a simple fitting function for the mass function valid across the entire range of our simulations. We find pronounced effects of nongaussianity on the clustering of dark matter halos, leading to strongly scale-dependent bias. This suggests that the large-scale clustering of rare objects may provide a sensitive probe of primordial nongaussianity. We very roughly estimate that upcoming surveys can constrain nongaussianity at the level |fNL| <~ 10, competitive with forecasted constraints from the microwave background.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

            We present the final nine-year maps and basic results from the WMAP mission. We provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate CMB anisotropy from foreground emission, and both types of signals are analyzed in detail. The WMAP mission has resulted in a highly constrained LCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that Big Bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (3.84+/-0.40). The model fit also implies that the age of the universe is 13.772+/-0.059 Gyr, and the fit Hubble constant is H0 = 69.32+/-0.80 km/s/Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity reported earlier by WMAP now has high statistical significance (n_s = 0.9608+/-0.0080); and the universe is close to flat/Euclidean, Omega_k = -0.0027 (+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter LCDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further. With no significant anomalies and an adequate goodness-of-fit, the inflationary flat LCDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Large scale bias and the peak background split

              Dark matter haloes are biased tracers of the underlying dark matter distribution. We use a simple model to provide a relation between the abundance of dark matter haloes and their spatial distribution on large scales. Our model shows that knowledge of the unconditional mass function alone is sufficient to provide an accurate estimate of the large scale bias factor. Then we use the mass function measured in numerical simulations of SCDM, OCDM and LCDM to compute this bias. Comparison with these simulations shows that this simple way of estimating the bias relation and its evolution is accurate for less massive haloes as well as massive ones. In particular, we show that haloes which are less/more massive than typical M* haloes at the time they form are more/less strongly clustered than formulae based on the standard Press-Schechter mass function predict.
                Bookmark

                Author and article information

                Journal
                PRVDAQ
                Physical Review D
                Phys. Rev. D
                American Physical Society (APS)
                1550-7998
                1550-2368
                February 2015
                February 5 2015
                : 91
                : 4
                Article
                10.1103/PhysRevD.91.043506
                b3c55aac-549c-4fd6-a8af-1bdd15740367
                © 2015

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article