2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary Coenzyme Q10 Deficiency: An Update

      , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extra-mitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant and plays an important role in fatty acid beta-oxidation and pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. Due to the multiplicity of roles in cell function, it is not surprising that a deficiency in CoQ10 has been implicated in the pathogenesis of a wide range of disorders. CoQ10 deficiency is broadly divided into primary and secondary types. Primary CoQ10 deficiency results from mutations in genes involved in the CoQ10 biosynthetic pathway. In man, at least 10 genes are required for the biosynthesis of functional CoQ10, a mutation in any one of which can result in a deficit in CoQ10 status. Patients may respond well to oral CoQ10 supplementation, although the condition must be recognised sufficiently early, before irreversible tissue damage has occurred. In this article, we have reviewed clinical studies (up to March 2023) relating to the identification of these deficiencies, and the therapeutic outcomes of CoQ10 supplementation; we have attempted to resolve the disparities between previous review articles regarding the usefulness or otherwise of CoQ10 supplementation in these disorders. In addition, we have highlighted several of the potential problems relating to CoQ10 supplementation in primary CoQ10 deficiency, as well as identifying unresolved issues relating to these disorders that require further research.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemical functions of coenzyme Q10.

          F. Crane (2001)
          Coenzyme Q is well defined as a crucial component of the oxidative phosphorylation process in mitochondria which converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis. New roles for coenzyme Q in other cellular functions are only becoming recognized. The new aspects have developed from the recognition that coenzyme Q can undergo oxidation/reduction reactions in other cell membranes such as lysosomes. Golgi or plasma membranes. In mitochondria and lysosomes, coenzyme Q undergoes reduction/oxidation cycles during which it transfers protons across the membrane to form a proton gradient. The presence of high concentrations of quinol in all membranes provides a basis for antioxidant action either by direct reaction with radicals or by regeneration of tocopherol and ascorbate. Evidence for a function in redox control of cell signaling and gene expression is developing from studies on coenzyme Q stimulation of cell growth, inhibition of apoptosis, control of thiol groups, formation of hydrogen peroxide and control of membrane channels. Deficiency of coenzyme Q has been described based on failure of biosynthesis caused by gene mutation, inhibition of biosynthesis by HMG coA reductase inhibitors (statins) or for unknown reasons in ageing and cancer. Correction of deficiency requires supplementation with higher levels of coenzyme Q than are available in the diet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

            Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome.

              Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of ESRD in the first two decades of life. Effective treatment is lacking. First insights into disease mechanisms came from identification of single-gene causes of SRNS. However, the frequency of single-gene causation and its age distribution in large cohorts are unknown. We performed exon sequencing of NPHS2 and WT1 for 1783 unrelated, international families with SRNS. We then examined all patients by microfluidic multiplex PCR and next-generation sequencing for all 27 genes known to cause SRNS if mutated. We detected a single-gene cause in 29.5% (526 of 1783) of families with SRNS that manifested before 25 years of age. The fraction of families in whom a single-gene cause was identified inversely correlated with age of onset. Within clinically relevant age groups, the fraction of families with detection of the single-gene cause was as follows: onset in the first 3 months of life (69.4%), between 4 and 12 months old (49.7%), between 1 and 6 years old (25.3%), between 7 and 12 years old (17.8%), and between 13 and 18 years old (10.8%). For PLCE1, specific mutations correlated with age of onset. Notably, 1% of individuals carried mutations in genes that function within the coenzyme Q10 biosynthesis pathway, suggesting that SRNS may be treatable in these individuals. Our study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                August 2023
                August 21 2023
                : 12
                : 8
                : 1652
                Article
                10.3390/antiox12081652
                10451954
                37627647
                b3e47118-129a-473d-9633-5578f3463056
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article