3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities

      research-article
      , ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study reports a facile and ecofriendly approach for the ultrasound assisted synthesis of silver and iron oxide nanoparticles and their enhanced antibacterial and antioxidant activities. The fenugreek seed extract was used as reducing, capping, and stabilizing agent in the synthesis of nanoparticles. The transmission electron microscopy results showed that nanoparticles synthesized by ultrasonication have a smaller size (~20 nm) as compared to the nanoparticles fabricated by magnetic stirring (~40 nm). The color change of the solution from milky white to brown suggested the formation of silver nanoparticles which was confirmed by the presence of an absorbance peak at 396 nm. The results of powder X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the crystallinity and elements present in nanoparticles synthesized using fenugreek seed extract. Fourier transform infrared analysis showed that the fenugreek seed phytochemicals were coated on the nanoparticle surface. Thermal gravimetric analysis showed the thermal degradation and stability of nanoparticles. Magnetization study of iron oxide nanoparticles confirmed the superparamagnetic nature. The silver nanoparticles showed antibacterial activities against both gram-negative ( Escherichia coli) and gram-positive ( Staphylococcus aureus) bacteria, while no antibacterial activities were observed for iron oxide nanoparticles. The ultrasound assisted nanoparticles showed higher stability and antibacterial and antioxidant activity compared with the nanoparticles fabricated by magnetic stirring.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.

          Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid biological synthesis of silver nanoparticles using plant leaf extracts.

            Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO(3) with the plant leaf extracts as reducing agent of Ag(+) to Ag(0). UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 degrees C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO(3) concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of ultrasound to the synthesis of nanostructured materials.

              Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                8 April 2019
                : 2019
                : 1714358
                Affiliations
                Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
                Author notes

                Academic Editor: Antonio Teixeira

                Author information
                http://orcid.org/0000-0002-9254-0842
                http://orcid.org/0000-0002-7251-7231
                Article
                10.1155/2019/1714358
                6476140
                31080808
                b4735bba-03a9-4e15-a742-d761b43e7a59
                Copyright © 2019 Aarti R. Deshmukh et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 January 2019
                : 18 March 2019
                : 26 March 2019
                Funding
                Funded by: Basic Science Research Program of the National Research Foundation of Korea
                Award ID: NRF-2017R1A2B4002371
                Categories
                Research Article

                Comments

                Comment on this article