12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Refined study of the interaction between HIV-1 p6 late domain and ALIX

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence ( Lxx) 4 ( LYP LTS LRS LFG). Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX 391–510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I.

          The multivesicular body (MVB) pathway is responsible for both the biosynthetic delivery of lysosomal hydrolases and the downregulation of numerous activated cell surface receptors which are degraded in the lysosome. We demonstrate that ubiquitination serves as a signal for sorting into the MVB pathway. In addition, we characterize a 350 kDa complex, ESCRT-I (composed of Vps23, Vps28, and Vps37), that recognizes ubiquitinated MVB cargo and whose function is required for sorting into MVB vesicles. This recognition event depends on a conserved UBC-like domain in Vps23. We propose that ESCRT-I represents a conserved component of the endosomal sorting machinery that functions in both yeast and mammalian cells to couple ubiquitin modification to protein sorting and receptor downregulation in the MVB pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MultiCoil: a program for predicting two- and three-stranded coiled coils.

            A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program. The program extends the two-stranded coiled-coil prediction program PairCoil to the identification of three-stranded coiled coils. The computations are based upon data gathered from a three-stranded coiled-coil database comprising 6,319 amino acid residues, as well as from the previously constructed two-stranded coiled-coil database. In addition to identifying coiled coils not predicted by the two-stranded database programs, MultiCoil accurately classifies the oligomerization states of known dimeric and trimeric coiled coils. Analysis of the MultiCoil scores provides insight into structural features of coiled coils, and yields estimates that 0.9% of all protein residues form three-stranded coiled coils and that 1.5% form two-stranded coiled coils. The MultiCoil program is available at http:/(/)theory.lcs.mit.edu/multicoil.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function.

              Efficient budding of HIV-1 from the plasma membrane of infected cells requires the function of a 6-kDa protein known as p6. A highly conserved Pro-Thr-Ala-Pro (PTAP) motif (the "late" or "L" domain), is critical for the virus-budding activity of p6. Recently, it was demonstrated that the product of tumor susceptibility gene 101 (TSG101), which contains at its N terminus a domain highly related to ubiquitin-conjugating (E2) enzymes, binds HIV-1 Gag in a p6-dependent fashion. We examined the impact of overexpressing the N-terminal region of TSG101 on HIV-1 particle assembly and release. We observed that this domain (referred to as TSG-5') potently inhibits virus production. Examination of cells coexpressing HIV-1 Gag and TSG-5' by electron microscopy reveals a defect in virus budding reminiscent of that observed with p6 L domain mutants. In addition, the effect of TSG-5' depends on an intact p6 L domain; the assembly and release of virus-like particles produced by Gag mutants lacking a functional p6 PTAP motif is not significantly affected by TSG-5'. Furthermore, assembly and release of murine leukemia virus and Mason-Pfizer monkey virus are insensitive to TSG-5'. TSG-5' is incorporated into virions, confirming the Gag/TSG101 interaction in virus-producing cells. Mutations that inactivate the p6 L domain block TSG-5' incorporation. These data demonstrate a link between the E2-like domain of TSG101 and HIV-1 L domain function, and indicate that TSG101 derivatives can act as potent and specific inhibitors of HIV-1 replication by blocking virus budding.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2008
                13 May 2008
                : 5
                : 39
                Affiliations
                [1 ]Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), VirPatH FRE 3011, Faculté de Médecine RTH Laennec, Lyon, France
                [2 ]Université Montpellier 1, Université Montpellier 2, CNRS, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, F-34965 Montpellier, France
                Article
                1742-4690-5-39
                10.1186/1742-4690-5-39
                2397435
                18477395
                b4876260-a24c-4332-a875-79441f8cb366
                Copyright © 2008 Lazert et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 December 2007
                : 13 May 2008
                Categories
                Short Report

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article