52
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Humanized TLR4/MD-2 Mice Reveal LPS Recognition Differentially Impacts Susceptibility to Yersinia pestis and Salmonella enterica

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for “humanized” TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with “humanized” TLR4/MD-2 transgenic mice.

          Author Summary

          The outer leaflet of the outer membrane of Gram-negative bacteria is mainly composed of lipopolysaccharide (LPS, endotoxin). The structure of the bioactive component of LPS, lipid A, varies between bacteria and even within the same species grown under different environmental conditions. Yersinia pestis has been associated with highly lethal bubonic plagues of the past. It alters the structure of its LPS based on temperature. When grown at ambient temperatures comparable to fleas in temperate climates, the LPS is mainly hexa-acylated. However, upon growth at 37°C, the mammalian host temperature, Y. pestis switches to synthesize a hypo-acylated LPS that is less stimulatory to the human compared with murine LPS receptor complex composed of Toll-like receptor (TLR) 4 and MD-2. To test whether the change in LPS structure associated with replication at mammalian temperature promotes Y. pestis virulence by evading recognition by the human receptor complex, we generated “humanized” mice that express human rather than mouse TLR4 and MD-2. We find that these mice are indeed more sensitive to Y. pestis infection than WT mice supporting the notion that evasion of recognition by TLR4/MD-2 promotes Y. pestis virulence in humans.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Lipid A modification systems in gram-negative bacteria.

          The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immune sensing and its roots: the story of endotoxin.

            How does the host sense pathogens? Our present concepts grew directly from longstanding efforts to understand infectious disease: how microbes harm the host, what molecules are sensed and, ultimately, the nature of the receptors that the host uses. The discovery of the host sensors--the Toll-like receptors--was rooted in chemical, biological and genetic analyses that centred on a bacterial poison, termed endotoxin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.

              The inflammatory toxicity of lipopolysaccharide (LPS), a component of bacterial cell walls, is driven by the adaptor proteins myeloid differentiation factor 88 (MyD88) and Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta (TRIF), which together mediate signaling by the endotoxin receptor Toll-like receptor 4 (TLR4). Monophosphoryl lipid A (MPLA) is a low-toxicity derivative of LPS with useful immunostimulatory properties, which is nearing regulatory approval for use as a human vaccine adjuvant. We report here that, in mice, the low toxicity of MPLA's adjuvant function is associated with a bias toward TRIF signaling, which we suggest is likely caused by the active suppression, rather than passive loss, of proinflammatory activity of this LPS derivative. This finding may have important implications for the development of future vaccine adjuvants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2012
                October 2012
                11 October 2012
                : 8
                : 10
                : e1002963
                Affiliations
                [1 ]Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
                [2 ]Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, United States of America
                [3 ]Division of Infectious and Immunological Diseases, University of British Columbia, Vancouver, British Columbia, Canada
                [4 ]Department of Immunology, University of Washington, Seattle, Washington, United States of America
                [5 ]Departments of Medicine, Genome Sciences, and Microbiology, University of Washington, Seattle, Washington, United States of America
                Portland VA Medical Center/Oregon Health and Science University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AMH RKE ESF TRK SIM CBW. Performed the experiments: AMH ESF RKE ASB CSY LAN. Analyzed the data: AMH RKE ESF ASB CSY LAN TRK SIM CBW. Contributed reagents/materials/analysis tools: AMH RKE ESF TRK. Wrote the paper: AMH RKE ESF ASB CSY LAN TRK SIM CBW.

                [¤]

                Current address: Bill & Melinda Gates Foundation, Seattle, Washington, United States of America

                Article
                PPATHOGENS-D-11-02759
                10.1371/journal.ppat.1002963
                3469661
                23071439
                b4993860-58ff-4c67-a8e9-fd245147db1c
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 December 2011
                : 23 August 2012
                Page count
                Pages: 10
                Funding
                Work on generating humanized TLR4/MD-2 mice was initially funded by HL69503 (A.M.H.), and more recently by N01AI50023 (A.M.H.) and U54AI057141 (S.I.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                Antigen-Presenting Cells
                Monocytes
                Immunity
                Immunity to Infections
                Inflammation
                Innate Immunity
                Microbiology
                Immunity
                Inflammation
                Innate Immunity
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Microbial Pathogens
                Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article