9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High gastrin releasing peptide receptor (GRPR) expression is associated with numerous cancers including prostate and breast cancer. The aim of the current study was to develop a 55Co-labeled PET agent based on GRPR antagonist RM26 for visualization of GRPR-expressing tumors. Labeling with 57Co and 55Co, stability, binding specificity, and in vitro and in vivo characteristics of 57Co-NOTA-PEG 2-RM26 were studied. NOTA-PEG 2-RM26 was successfully radiolabeled with 57Co and 55Co with high yields and demonstrated high stability. The radiopeptide showed retained binding specificity to GRPR in vitro and in vivo. 57Co-NOTA-PEG 2-RM26 biodistribution in mice was characterized by rapid clearance of radioactivity from blood and normal non-GRPR-expressing organs and low hepatic uptake. The clearance was predominantly renal with a low degree of radioactivity reabsorption. Tumor-to-blood ratios were approximately 200 (3 h pi) and 1000 (24 h pi). The favorable biodistribution of cobalt-labeled NOTA-PEG 2-RM26 translated into high contrast preclinical PET/CT (using 55Co) and SPECT/CT (using 57Co) images of PC-3 xenografts. The initial biological results suggest that 55Co-NOTA-PEG 2-RM26 is a promising tracer for PET visualization of GRPR-expressing tumors.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Bombesin receptor antagonists may be preferable to agonists for tumor targeting.

          Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Challenges in clinical prostate cancer: role of imaging.

            This article reviews a recent 2-day workshop on prostate cancer and imaging technology that was conducted by the Cancer Imaging Program of the National Cancer Institute. The workshop dealt with research trends and avenues for improving imaging and applications across the clinical spectrum of the disease. After a summary of prostate cancer incidence and mortality, four main clinical challenges in prostate cancer treatment and management-diagnostic accuracy; risk stratification, initial staging, active surveillance, and focal therapy; prostate-specific antigen relapse after radiation therapy or radical prostatectomy; and assessing response to therapy in advanced disease-were discussed by the 55-member panel. The overarching issue in prostate cancer is distinguishing lethal from nonlethal disease. New technologies and fresh uses for established procedures make imaging effective in both assessing and treating prostate cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors.

              Bombesin receptors are overexpressed on a variety of human tumors. In particular, the gastrin-releasing peptide receptor (GRPr) has been identified on prostate and breast cancers and on gastrointestinal stromal tumors. The current study aims at developing clinically translatable bombesin antagonist-based radioligands for SPECT and PET of GRPr-positive tumors. A potent bombesin antagonist (PEG(4)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) [AR]) was synthesized; conjugated to the chelators DOTA, 6-carboxy-1,4,7,11-tetraazaundecane (N4), 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A); and radiolabeled with (111)In, (99m)Tc, (68)Ga, and (64)Cu, respectively. The radioconjugates were evaluated in vitro and in vivo in PC-3 tumor-bearing nude mice. Antagonist potency was determined by Ca(2+)-flux measurements and immunofluorescence. All the conjugates showed high binding affinity to GRPr (inhibitory concentration of 50% [IC(50)], 2.5-25 nmol/L). The immunofluorescence and Ca(2+)-flux assays confirmed the antagonist properties of the conjugates. Biodistribution revealed high and specific uptake in PC-3 tumor and in GRPr-positive tissues. Tumor uptake of (64)Cu-CB-TE2A-AR (31.02 ± 3.35 percentage injected activity per gram [%IA/g]) was higher than (99m)Tc-N4-AR (24.98 ± 5.22 %IA/g), (111)In-DOTA-AR (10.56 ± 0.70 %IA/g), and (68)Ga-NODAGA-AR (7.11 ± 3.26 %IA/g) at 1 h after injection. Biodistribution at later time points showed high tumor-to-background ratios because of the fast washout of the radioligand from normal organs, compared with tumor. High tumor-to-background ratios were further illustrated by PET and SPECT images of PC-3 tumor-bearing nude mice acquired at 12 h after injection showing high tumor uptake, clear background, and negligible or no radioactivity in the abdomen. The chelators do influence the affinity, antagonistic potency, and pharmacokinetics of the conjugates. The promising preclinical results warrant clinical translation of these probes for SPECT and PET.
                Bookmark

                Author and article information

                Journal
                Contrast Media Mol Imaging
                Contrast Media Mol Imaging
                CMMI
                Contrast Media & Molecular Imaging
                Hindawi
                1555-4309
                1555-4317
                2017
                10 August 2017
                : 2017
                : 6873684
                Affiliations
                1Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
                2PET & Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
                3Department of Clinical Research, University of Southern Denmark, Odense, Denmark
                4Division of Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
                5Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
                6Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
                Author notes

                Academic Editor: Ralf Schirrmacher

                Author information
                http://orcid.org/0000-0001-7921-3268
                http://orcid.org/0000-0002-6122-1734
                http://orcid.org/0000-0001-6120-2683
                Article
                10.1155/2017/6873684
                5612608
                29097932
                b49d8264-f0e9-4af6-8cb2-938c82d436f2
                Copyright © 2017 Bogdan Mitran et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 April 2017
                : 22 June 2017
                Funding
                Funded by: Swedish Cancer Society
                Award ID: CAN2014/474
                Award ID: CAN2015/350
                Funded by: Vetenskapsrådet
                Award ID: 2015-02509
                Award ID: 2015-02353
                Categories
                Research Article

                Comments

                Comment on this article