40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The depletion of cholesterol from membranes, mediated by β-cyclodextrin ( β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers.

          Author Summary

          The ability of certain molecules to capture other molecules forming so-called inclusion complexes has a range of potential important applications in e.g. drug delivery and chemical sensing. Here we study the complexation of cholesterol by small oligosaccharide rings named cyclodextrins (CDs). Cholesterol is an essential lipid in the plasma cell membrane, and the ability of CDs to extract cholesterol is widely used in the biomedical field to control the level of cholesterol in the membrane. The molecular mechanism of this process, however, is still not resolved. Using a detailed computational model of cholesterol and CD, we have succeeded to simulate this extraction process. We observe that the CDs are rapidly binding to the membrane surface in a dimeric form, and, provided that the CD dimers are in a suitable orientation, cholesterol molecules are being extracted spontaneously. The cholesterol/CD inclusion complex remains adsorbed on the surface; our simulations predict that the rate limiting step for the actual transport of cholesterol is the desorption of the complex from the membrane. With a clearer understanding of the basic molecular mechanism of the CD mediated process of cholesterol extraction, we can begin to rationalize the design of more efficient CDs in numerous applications.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Cyclodextrins and their uses: a review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies.

            The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclodextrin-based supramolecular polymers.

              Recently, supramolecular chemistry has been expanding to supramolecular polymer chemistry. The combination of cyclic molecules and linear polymers has provided many kinds of intriguing supramolecular architectures, such as rotaxanes and catenanes. This tutorial review overviews construction of some supramolecular architectures formed by cyclodextrins or their derivatives with guest molecules. In the first part, the construction of supramolecular structures of cyclodextrins with some polymers (polyrotaxanes) is described. In the second part, formation of supramolecular oligomers and polymers formed by cyclodextrin derivatives is described.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2011
                March 2011
                24 March 2011
                : 7
                : 3
                : e1002020
                Affiliations
                [1]Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
                University of North Carolina, Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: CAL AHdV SJM. Performed the experiments: CAL. Analyzed the data: CAL AHdV SJM. Contributed reagents/materials/analysis tools: CAL SJM. Wrote the paper: CAL SJM.

                Article
                PCOMPBIOL-D-10-00132
                10.1371/journal.pcbi.1002020
                3063748
                21455285
                b4ab4690-ee10-421d-8041-bafd1a1bf901
                López et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 October 2010
                : 3 February 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Chemistry
                Computer Science
                Physics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article