9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insulin resistance and bone: a biological partnership

      , ,
      Acta Diabetologica
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture.

          The authors conducted a systematic review of published data on the association between diabetes mellitus and fracture. The authors searched MEDLINE through June 2006 and examined the reference lists of pertinent articles (limited to studies in humans). Summary relative risks and 95% confidence intervals were calculated with a random-effects model. The 16 eligible studies (two case-control studies and 14 cohort studies) included 836,941 participants and 139,531 incident cases of fracture. Type 2 diabetes was associated with an increased risk of hip fracture in both men (summary relative risk (RR) = 2.8, 95% confidence interval (CI): 1.2, 6.6) and women (summary RR = 2.1, 95% CI: 1.6, 2.7). Results were consistent between studies of men and women and between studies conducted in the United States and Europe. The association between type of diabetes and hip fracture incidence was stronger for type 1 diabetes (summary RR = 6.3, 95% CI: 2.6, 15.1) than for type 2 diabetes (summary RR = 1.7, 95% CI: 1.3, 2.2). Type 2 diabetes was weakly associated with fractures at other sites, and most effect estimates were not statistically significant. These findings strongly support an association between both type 1 and type 2 diabetes and increased risk of hip fracture in men and women.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes.

            Type 2 diabetes mellitus (DM) is associated with higher bone mineral density (BMD) and paradoxically with increased fracture risk. It is not known if low BMD, central to fracture prediction in older adults, identifies fracture risk in patients with DM. To determine if femoral neck BMD T score and the World Health Organization Fracture Risk Algorithm (FRAX) score are associated with hip and nonspine fracture risk in older adults with type 2 DM. Data from 3 prospective observational studies with adjudicated fracture outcomes (Study of Osteoporotic Fractures [December 1998-July 2008]; Osteoporotic Fractures in Men Study [March 2000-March 2009]; and Health, Aging, and Body Composition study [April 1997-June 2007]) were analyzed in older community-dwelling adults (9449 women and 7436 men) in the United States. Self-reported incident fractures, which were verified by radiology reports. Of 770 women with DM, 84 experienced a hip fracture and 262 a nonspine fracture during a mean (SD) follow-up of 12.6 (5.3) years. Of 1199 men with DM, 32 experienced a hip fracture and 133 a nonspine fracture during a mean (SD) follow-up of 7.5 (2.0) years. Age-adjusted hazard ratios (HRs) for 1-unit decrease in femoral neck BMD T score in women with DM were 1.88 (95% confidence interval [CI], 1.43-2.48) for hip fracture and 1.52 (95% CI, 1.31-1.75) for nonspine fracture, and in men with DM were 5.71 (95% CI, 3.42-9.53) for hip fracture and 2.17 (95% CI, 1.75-2.69) for nonspine fracture. The FRAX score was also associated with fracture risk in participants with DM (HRs for 1-unit increase in FRAX hip fracture score, 1.05; 95% CI, 1.03-1.07, for women with DM and 1.16; 95% CI, 1.07-1.27, for men with DM; HRs for 1-unit increase in FRAX osteoporotic fracture score, 1.04; 95% CI, 1.02-1.05, for women with DM and 1.09; 95% CI, 1.04-1.14, for men with DM). However, for a given T score and age or for a given FRAX score, participants with DM had a higher fracture risk than those without DM. For a similar fracture risk, participants with DM had a higher T score than participants without DM. For hip fracture, the estimated mean difference in T score for women was 0.59 (95% CI, 0.31-0.87) and for men was 0.38 (95% CI, 0.09-0.66). Among older adults with type 2 DM, femoral neck BMD T score and FRAX score were associated with hip and nonspine fracture risk; however, in these patients compared with participants without DM, the fracture risk was higher for a given T score and age or for a given FRAX score.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo assessment of bone quality in postmenopausal women with type 2 diabetes.

              Although patients with type 2 diabetes (T2D) are at significant risk for well-recognized diabetic complications, including macrovascular disease, retinopathy, nephropathy, and neuropathy, it is also clear that T2D patients are at increased risk for fragility fractures. Furthermore, fragility fractures in patients with T2D occur at higher bone mineral density (BMD) values compared to nondiabetic controls, suggesting abnormalities in bone material strength (BMS) and/or bone microarchitecture (bone "quality"). Thus, we performed in vivo microindentation testing of the tibia to directly measure BMS in 60 postmenopausal women (age range, 50-80 years) including 30 patients diagnosed with T2D for >10 years and 30 age-matched, nondiabetic controls. Regional BMD was measured by dual-energy X-ray absorptiometry (DXA); cortical and trabecular bone microarchitecture was assessed from high-resolution peripheral quantitative computed tomography (HRpQCT) images of the distal radius and tibia. Compared to controls, T2D patients had significantly lower BMS: unadjusted (-11.7%; p<0.001); following adjustment for body mass index (BMI) (-10.5%; p<0.001); and following additional adjustment for age, hypertension, nephropathy, neuropathy, retinopathy, and vascular disease (-9.2%; p=0.022). By contrast, after adjustment for confounding by BMI, T2D patients had bone microarchitecture and BMD that were not significantly different than controls; however, radial cortical porosity tended to be higher in the T2D patients. In addition, patients with T2D had significantly reduced serum markers of bone turnover (all p<0.001) compared to controls. Of note, in patients with T2D, the average glycated hemoglobin level over the previous 10 years was negatively correlated with BMS (r=-0.41; p=0.026). In conclusion, these findings represent the first demonstration of compromised BMS in patients with T2D. Furthermore, our results confirm previous studies demonstrating low bone turnover in patients with T2D and highlight the potential detrimental effects of prolonged hyperglycemia on bone quality. Thus, the skeleton needs to be recognized as another important target tissue subject to diabetic complications. © 2014 American Society for Bone and Mineral Research. © 2014 American Society for Bone and Mineral Research.
                Bookmark

                Author and article information

                Journal
                Acta Diabetologica
                Acta Diabetol
                Springer Nature America, Inc
                0940-5429
                1432-5233
                April 2018
                January 15 2018
                April 2018
                : 55
                : 4
                : 305-314
                Article
                10.1007/s00592-018-1101-7
                29333578
                b54b1d73-8eaf-4744-9408-e8c363a27a43
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article