4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11–12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione in plants: an integrated overview.

          Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants

              Background Stevia rebaudiana produces sweet-tasting steviol glycosides (SGs) in its leaves which can be used as natural sweeteners. Metabolic engineering of Stevia would offer an alternative approach to conventional breeding for enhanced production of SGs. However, an effective protocol for Stevia transformation is lacking. Results Here, we present an efficient and reproducible method for Agrobacterium-mediated transformation of Stevia. In our attempts to produce transgenic Stevia plants, we found that prolonged dark incubation is critical for increasing shoot regeneration. Etiolated shoots regenerated in the dark also facilitated subsequent visual selection of transformants by green fluorescent protein during Stevia transformation. Using this newly established transformation method, we overexpressed the Stevia 1-deoxy-d-xylulose-5-phosphate synthase 1 (SrDXS1) and kaurenoic acid hydroxylase (SrKAH), both of which are required for SGs biosynthesis. Compared to control plants, the total SGs content in SrDXS1- and SrKAH-overexpressing transgenic lines were enhanced by up to 42–54% and 67–88%, respectively, showing a positive correlation with the expression levels of SrDXS1 and SrKAH. Furthermore, their overexpression did not stunt the growth and development of the transgenic Stevia plants. Conclusion This study represents a successful case of genetic manipulation of SGs biosynthetic pathway in Stevia and also demonstrates the potential of metabolic engineering towards producing Stevia with improved SGs yield. Electronic supplementary material The online version of this article (10.1186/s12870-018-1600-2) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                23 July 2020
                August 2020
                : 11
                : 8
                : 838
                Affiliations
                [1 ]Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; snavrotskyi@ 123456huskers.unl.edu
                [2 ]Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; pbaenziger1@ 123456unl.edu
                Author notes
                [* ]Correspondence: vikas.belamkar@ 123456unl.edu (V.B.); drose3@ 123456unl.edu (D.J.R.); Tel.: +1-402-472-2811 (V.B.); +1-402-472-2802 (D.J.R.)
                Author information
                https://orcid.org/0000-0002-9109-6954
                https://orcid.org/0000-0002-1333-6318
                Article
                genes-11-00838
                10.3390/genes11080838
                7466047
                32717821
                b5ef96be-909a-4ca7-a5b4-7d64e00e11ae
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 June 2020
                : 21 July 2020
                Categories
                Article

                wheat quality,wheat milling,wheat hardness,puroindolines,water absorption capacity

                Comments

                Comment on this article