Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination

      , , , , , , , ,
      DNA Repair
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonhomologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. Several proteins, including the DNA-dependent protein kinase (DNA-PK), XRCC4 and DNA ligase IV, are required for nonhomologous end joining both in vitro and in vivo. Since XRCC4 is recruited to the DNA double-strand break with DNA-PK, and because the protein kinase activity of DNA-PK is required for its in vivo function, we reasoned that XRCC4 could be a potential physiological substrate of DNA-PK. Here, we have used mass spectrometry to map the DNA-PK phosphorylation sites in XRCC4. Two major phosphorylation sites (serines 260 and 318), as well as several minor sites were identified. All of the identified sites lie within the carboxy-terminal 100 amino acids of XRCC4. Substitution of each of these sites to alanine (in combination) reduced the ability of DNA-PK to phosphorylate XRCC4 in vitro by at least two orders of magnitude. However, XRCC4-deficient cells that were complemented with XRCC4 lacking DNA-PK phosphorylation sites were analogous to wild type XRCC4 with respect to survival after ionizing radiation and ability to repair DSBs introduced during V(D)J recombination.

          Related collections

          Author and article information

          Journal
          DNA Repair
          DNA Repair
          Elsevier BV
          15687864
          November 2003
          November 2003
          : 2
          : 11
          : 1239-1252
          Article
          10.1016/S1568-7864(03)00143-5
          14599745
          b5f85071-49c4-44d0-b87f-d521783f61b5
          © 2003

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article