1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deterministic Implementations for Reproducibility in Deep Reinforcement Learning

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While deep reinforcement learning (DRL) has led to numerous successes in recent years, reproducing these successes can be extremely challenging. One reproducibility challenge particularly relevant to DRL is nondeterminism in the training process, which can substantially affect the results. Motivated by this challenge, we study the positive impacts of deterministic implementations in eliminating nondeterminism in training. To do so, we consider the particular case of the deep Q-learning algorithm, for which we produce a deterministic implementation by identifying and controlling all sources of nondeterminism in the training process. One by one, we then allow individual sources of nondeterminism to affect our otherwise deterministic implementation, and measure the impact of each source on the variance in performance. We find that individual sources of nondeterminism can substantially impact the performance of agent, illustrating the benefits of deterministic implementations. In addition, we also discuss the important role of deterministic implementations in achieving exact replicability of results.

          Related collections

          Author and article information

          Journal
          15 September 2018
          Article
          1809.05676
          b69123c7-987e-471f-85da-c2eb3846c7d7

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          17 Pages
          cs.AI

          Artificial intelligence
          Artificial intelligence

          Comments

          Comment on this article