15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Background:

          In addition to enhanced proinflammatory signaling, impaired resolution of vascular inflammation plays a key role in atherosclerosis. Proresolving lipid mediators formed through the 12/15 lipoxygenase pathways exert protective effects against murine atherosclerosis. n-3 Polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), serve as the substrate for the formation of lipid mediators, which transduce potent anti-inflammatory and proresolving actions through their cognate G-protein–coupled receptors. The aim of this study was to identify signaling pathways associated with EPA supplementation and lipid mediator formation that mediate atherosclerotic disease progression.

          Methods:

          Lipidomic plasma analysis were performed after EPA supplementation in Apoe −/− mice. Erv1/Chemr23 −/− xApoe −/− mice were generated for the evaluation of atherosclerosis, phagocytosis, and oxidized low-density lipoprotein uptake. Histological and mRNA analyses were done on human atherosclerotic lesions.

          Results:

          Here, we show that EPA supplementation significantly attenuated atherosclerotic lesion growth induced by Western diet in Apoe −/− mice and was associated with local cardiovascular n-3 enrichment and altered lipoprotein metabolism. Our systematic plasma lipidomic analysis identified the resolvin E1 precursor 18-monohydroxy EPA as a central molecule formed during EPA supplementation. Targeted deletion of the resolvin E1 receptor Erv1/Chemr23 in 2 independent hyperlipidemic murine models was associated with proatherogenic signaling in macrophages, increased oxidized low-density lipoprotein uptake, reduced phagocytosis, and increased atherosclerotic plaque size and necrotic core formation. We also demonstrate that in macrophages the resolvin E1–mediated effects in oxidized low-density lipoprotein uptake and phagocytosis were dependent on Erv1/Chemr23. When analyzing human atherosclerotic specimens, we identified ERV1/ChemR23 expression in a population of macrophages located in the proximity of the necrotic core and demonstrated augmented ERV1/ChemR23 mRNA levels in plaques derived from statin users.

          Conclusions:

          This study identifies 18-monohydroxy EPA as a major plasma marker after EPA supplementation and demonstrates that the ERV1/ChemR23 receptor for its downstream mediator resolvin E1 transduces protective effects in atherosclerosis. ERV1/ChemR23 signaling may represent a previously unrecognized therapeutic pathway to reduce atherosclerotic cardiovascular disease.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing

          Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators.

            Atherosclerosis is now recognized as an inflammatory disease involving the vascular wall. Recent results indicate that acute inflammation does not simply passively resolve as previously assumed but is actively terminated by a homeostatic process that is governed by specific lipid-derived mediators initiated by lipoxygenases. Experiments with animals and humans support a proinflammatory role for the 5-lipoxygenase system. In contrast, results from animal experiments show a range of responses with the 12/15-lipoxygenase pathways in atherosclerosis. To date, the only two clinical epidemiology human studies both support an antiatherogenic role for 12/15-lipoxygenase downstream actions. We tested the hypothesis that atherosclerosis results from a failure in the resolution of local inflammation by analyzing apolipoprotein E-deficient mice with 1) global leukocyte 12/15-lipoxygenase deficiency, 2) normal enzyme expression, or 3) macrophage-specific 12/15-lipoxygenase overexpression. Results from these indicate that 12/15-lipoxygenase expression protects mice against atherosclerosis via its role in the local biosynthesis of lipid mediators, including lipoxin A(4), resolvin D1, and protectin D1. These mediators exert potent agonist actions on macrophages and vascular endothelial cells that can control the magnitude of the local inflammatory response. Taken together, these findings suggest that a failure of local endogenous resolution mechanisms may underlie the unremitting inflammation that fuels atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes.

              Obesity, characterized by an excess of adipose tissue, is an established risk factor for cardiovascular disease and type 2 diabetes. Different mechanisms linking obesity with these comorbidities have been postulated but remain poorly understood. Adipose tissue secretes a number of hormone-like compounds, termed adipokines, that are important for the maintenance of normal glucose metabolism. Alterations in the secretion of adipokines with obesity are believed to contribute to the undesirable changes in glucose metabolism that ultimately result in the development of type 2 diabetes. In the present study, we have shown that serum levels of the novel adipokine chemerin are significantly elevated in mouse models of obesity/diabetes. The expression of chemerin and its receptors, chemokine-like receptor 1, chemokine (C-C motif) receptor-like 2, and G protein-coupled receptor 1 are altered in white adipose, skeletal muscle, and liver tissue of obese/diabetic mice. Administration of exogenous chemerin exacerbates glucose intolerance, lowers serum insulin levels, and decreases tissue glucose uptake in obese/diabetic but not normoglycemic mice. Collectively, these data indicate that chemerin influences glucose homeostasis and may contribute to the metabolic derangements characteristic of obesity and type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                CIR
                Circulation
                Lippincott Williams & Wilkins
                0009-7322
                1524-4539
                16 October 2018
                15 October 2018
                : 138
                : 16
                : 1693-1705
                Affiliations
                [1 ]Experimental Cardiovascular Research, Department of Medicine (A.L.-F., M.C., G.A., M.H.P., R.B., M.J.F., X.J., T.A.., H.A., A.G., S.T., G.P.-B., D.F.J.K., G.K.H., M.B.), Karolinska Institutet, Stockholm, Sweden
                [2 ]Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics (A.C., C.E.W.), Karolinska Institutet, Stockholm, Sweden
                [3 ]Heart and Vascular Theme, Division of Valvular and Coronary Disease (M.B.), Karolinska Institutet, Stockholm, Sweden. Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom.
                Author notes
                Magnus Bäck, MD, PhD, Translational Cardiology, Department of Medicine, Norrbacka S1:02, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden. E-mail magnus.back@ 123456ki.se
                Article
                00011
                10.1161/CIRCULATIONAHA.117.032801
                6200387
                29739755
                b6b9f284-b2be-4c0b-bf0a-95c588e59ea9
                © 2018 The Authors.

                Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

                History
                : 16 November 2017
                : 20 April 2018
                Categories
                10030
                10034
                10053
                10054
                Original Research Articles
                Custom metadata
                TRUE

                atherosclerosis,lipoproteins, ldl,macrophages,phagocytosis

                Comments

                Comment on this article