1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing cellulose micro/nanofibre morphology using a high throughput fibre analysis device to predict nanopaper performance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterising cellulose nanofibre (CNF) morphology has been identified as a grand challenge for the nanocellulose research field. Direct techniques for CNF morphology characterisation exhibit various difficulties related to the material network structure and equipment cost, while indirect techniques that investigate fibre-light interaction, fibre-solvent interaction, fibre-fibre interaction, or specific fibre surface area involve relatively facile methods but may be more unreliable. Nanopaper mechanical testing is a prevalent metric for assessing fibre-fibre interaction, but is an off-line, time-consuming, and destructive methodology. In this study, an optical fibre morphology analyser (MorFi, Techpap) was employed as an on-line, high throughput, fast turnaround tool to assess micro/nanofibre pulp morphology and predict the properties of nanopaper material. Correlation analysis identified fibre content and fibre kink properties as most correlated with nanopaper strength and toughness, while fibre width and coarseness were most inversely correlated with nanopaper performance. Principal component analysis (PCA) was employed to visualise interdependent morphological and mechanical data. Subsequently, two data driven statistical models—multiple linear regression (MLR) and machine learning based support vector regression (SVR)—were established to predict nanopaper properties from fibre morphology data, with SVR generating a more accurate prediction across all nanopaper properties (NRMSE = 0.13–0.33) compared to the MLR model (NRMSE = 0.33–0.51). This study highlights that statistical methods are useful to disentangle and visualise interdependent morphological data from an on-line fibre analysis device, while regression models are also capable of predicting paper mechanical properties from CNF samples even though these devices do not operate at nanoscale resolution.

          Graphical abstract

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Cellulose nanomaterials review: structure, properties and nanocomposites.

          This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.

            Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.

              Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cellulose
                Cellulose
                Springer Science and Business Media LLC
                0969-0239
                1572-882X
                March 2022
                February 09 2022
                March 2022
                : 29
                : 4
                : 2599-2616
                Article
                10.1007/s10570-021-04405-5
                b724dd2e-85f0-4c8c-98a6-f507c5764ee4
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article