1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Selective regulation in ribosome biogenesis and protein production for efficient viral translation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication.

          Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.

            Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells.

              The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.
                Bookmark

                Author and article information

                Contributors
                2015001@cau.edu.cn
                kuangyu@cau.edu.cn
                wangxj@cau.edu.cn
                Journal
                Arch Microbiol
                Arch Microbiol
                Archives of Microbiology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0302-8933
                1432-072X
                29 October 2020
                : 1-12
                Affiliations
                GRID grid.22935.3f, ISNI 0000 0004 0530 8290, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, , China Agricultural University, ; Beijing, 100193 China
                Author notes

                Communicated by Erko Stackebrandt.

                Author information
                http://orcid.org/0000-0001-9183-0023
                Article
                2094
                10.1007/s00203-020-02094-5
                7594972
                33124672
                b72b822d-2649-4533-bb73-feb20ae59422
                © Springer-Verlag GmbH Germany, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 7 July 2020
                : 18 September 2020
                : 13 October 2020
                Funding
                Funded by: National Natural Science Foundation of China (CN)
                Award ID: 31772739
                Award Recipient :
                Categories
                Mini-Review

                Microbiology & Virology
                selective translation,ribosome biogenesis factor,ribosomal protein,antiviral target

                Comments

                Comment on this article