8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemically Induced Renal Tubule Tumors in the Laboratory Rat and Mouse: Review of the NCI/NTP Database and Categorization of Renal Carcinogens Based on Mechanistic Information

      ,
      Critical Reviews in Toxicology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology.

          The "sphingosin" backbone of sphingolipids was so named by J. L. W. Thudichum in 1884 for its enigmatic ("Sphinx-like") properties. Although still an elusive class of lipids, research on the involvement of sphingolipids in the signal transduction pathways that mediate cell growth, differentiation, multiple cell functions, and cell death has been rapidly expanding our understanding of these compounds. In addition to the newly discovered role of ceramide as an intracellular second messenger for tumor necrosis factor-alpha, IL-1beta, and other cytokines, sphingosine, sphingosine-1-phosphate, and other sphingolipid metabolites have recently been demonstrated to modulate cellular calcium homeostasis and cell proliferation. Perturbation of sphingolipid metabolism using synthetic and naturally occurring inhibitors of key enzymes of the biosynthetic pathways is aiding the characterization of these processes; for examples, inhibition of cerebroside synthase has indicated a role for ceramide in cellular stress responses including heat shock, and inhibition of ceramide synthase (by fumonisins) has revealed the role of disruption of sphingolipid metabolism in several animal diseases. Fumonisins are currently the focus of a FDA long-term tumor study. This review summarizes recent research on (i) the role of sphingolipids as important components of the diet, (ii) the role of sphingoid base metabolites and the ceramide cycle in expression of genes regulating cell growth, differentiation, and apoptosis, (iii) the use of cerebroside synthase inhibitors as tools for understanding the role of sphingolipids as mediators of cell cycle progression, renal disease, and stress responses, and (iv) the involvement of disrupted sphingolipid metabolism in animal disease and cellular deregulation associated with exposure to inhibitors of ceramide synthase and serine palmitoyltransferase, key enzymes in de novo sphingolipid biosynthesis. These findings illustrate how an understanding of the function of sphingolipids can help solve questions in toxicology and this is undoubtedly only the beginning of this story.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell proliferation in carcinogenesis.

            Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of 8-hydroxyguanine in carcinogenesis.

                Bookmark

                Author and article information

                Journal
                Critical Reviews in Toxicology
                Critical Reviews in Toxicology
                Informa UK Limited
                1040-8444
                1547-6898
                July 05 2010
                January 2004
                July 05 2010
                January 2004
                : 34
                : 3
                : 211-299
                Article
                10.1080/10408440490265210
                b72f69d1-662b-4095-b4cd-d8e811450954
                © 2004
                History

                Comments

                Comment on this article