31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Repeated Training with Augmentative Vibrotactile Feedback Increases Object Manipulation Performance

      research-article
      1 , 2 , * , 3 , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most users of prosthetic hands must rely on visual feedback alone, which requires visual attention and cognitive resources. Providing haptic feedback of variables relevant to manipulation, such as contact force, may thus improve the usability of prosthetic hands for tasks of daily living. Vibrotactile stimulation was explored as a feedback modality in ten unimpaired participants across eight sessions in a two-week period. Participants used their right index finger to perform a virtual object manipulation task with both visual and augmentative vibrotactile feedback related to force. Through repeated training, participants were able to learn to use the vibrotactile feedback to significantly improve object manipulation. Removal of vibrotactile feedback in session 8 significantly reduced task performance. These results suggest that vibrotactile feedback paired with training may enhance the manipulation ability of prosthetic hand users without the need for more invasive strategies.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Consolidation in human motor memory.

          Learning a motor skill sets in motion neural processes that continue to evolve after practice has ended, a phenomenon known as consolidation. Here we present psychophysical evidence for this, and show that consolidation of a motor skill was disrupted when a second motor task was learned immediately after the first. There was no disruption if four hours elapsed between learning the two motor skills, with consolidation occurring gradually over this period. Previous studies in humans and other primates have found this time-dependent disruption of consolidation only in explicit memory tasks, which rely on brain structures in the medial temporal lobe. Our results indicate that motor memories, which do not depend on the medial temporal lobe, can be transformed by a similar process of consolidation. By extending the phenomenon of consolidation to motor memory, our results indicate that distinct neural systems share similar characteristics when encoding and storing new information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct neural sensory feedback and control of a prosthetic arm.

            Evidence indicates that user acceptance of modern artificial limbs by amputees would be significantly enhanced by a system that provides appropriate, graded, distally referred sensations of touch and joint movement, and that the functionality of limb prostheses would be improved by a more natural control mechanism. We have recently demonstrated that it is possible to implant electrodes within individual fascicles of peripheral nerve stumps in amputees, that stimulation through these electrodes can produce graded, discrete sensations of touch or movement referred to the amputee's phantom hand, and that recordings of motor neuron activity associated with attempted movements of the phantom limb through these electrodes can be used as graded control signals. We report here that this approach allows amputees to both judge and set grip force and joint position in an artificial arm, in the absence of visual input, thus providing a substrate for better integration of the artificial limb into the amputee's body image. We believe this to be the first demonstration of direct neural feedback from and direct neural control of an artificial arm in amputees.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrotactile and vibrotactile displays for sensory substitution systems.

              Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used, or with the information processed in some useful way. We review the methods used to present visual, auditory, and modified tactile information to the skin. First, we discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). Next, we review the relevant sensory physiology of the skin, including both the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile (also called electrocutaneous) stimulation). We briefly summarize the information-processing ability of the tactile sense and its relevance to sensory substitution. Finally, we discuss the limitations of current tactile display technologies and suggest areas requiring further research for sensory substitution systems to become more practical.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 February 2012
                : 7
                : 2
                : e32743
                Affiliations
                [1 ]Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
                [2 ]Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
                [3 ]Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
                Katholieke Universiteit Leuven, Belgium
                Author notes

                Conceived and designed the experiments: CES YM. Performed the experiments: QA. Analyzed the data: CES. Contributed reagents/materials/analysis tools: CES YM. Wrote the paper: CES YM QA.

                Article
                PONE-D-11-14755
                10.1371/journal.pone.0032743
                3287982
                22384283
                b746708a-8918-4c10-a012-a025e01c7467
                Stepp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 August 2011
                : 3 February 2012
                Page count
                Pages: 6
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Neuroscience
                Neurophysiology
                Medicine
                Anatomy and Physiology
                Neurological System
                Social and Behavioral Sciences
                Psychology
                Cognitive Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article