29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary fiber in irritable bowel syndrome (Review)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Dietary modulation of the human colonic microbiota: updating the concept of prebiotics.

          Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin.

            Oligofructose and inulin are naturally occurring indigestible carbohydrates. In vitro they selectively stimulate the growth of species of Bifidobacterium, a genus of bacteria considered beneficial to health. This study was designed to determine their effects on the large bowel microflora and colonic function in vivo. Eight subjects participated in a 45-day study during which they ate controlled diets. For the middle 15 days, 15 g.day-1 oligofructose was substituted for 15 g.day-1 sucrose. Four of these subjects went on to a further period with 15 g.day-1 inulin. Bowel habit, transit time, stool composition, breath H2 and CH4, and the predominant genera of colonic bacteria were measured. Both oligofructose and inulin significantly increased bifidobacteria from 8.8 to 9.5 log10 g stool-1 and 9.2 to 10.1 log10 g stool-1, respectively, whereas bacteroides, clostridia, and fusobacteria decreased when subjects were fed oligofructose, and gram-positive cocci decreased when subjects were fed inulin. Total bacterial counts were unchanged. Fecal wet and dry matter, nitrogen, and energy excretion increased with both substrates, as did breath H2. Little change in fecal short-chain fatty acids and breath CH4 was observed. A 15-g.day-1 dietary addition of oligofructose or inulin led to Bifidobacterium becoming the numerically predominant genus in feces. Thus, small changes in diet can alter the balance of colonic bacteria towards a potentially healthier microflora.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prebiotics: The Concept Revisited

              The Journal of Nutrition, 137(3), 830S-837S
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                September 2017
                19 July 2017
                19 July 2017
                : 40
                : 3
                : 607-613
                Affiliations
                [1 ]Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord
                [2 ]Department of Clinical Medicine, University of Bergen
                [3 ]National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5020 Bergen
                [4 ]Department of Research and Innovation, Helse-Fonna, 5528 Haugesund, Norway
                Author notes
                Correspondence to: Professor Magdy El-Salhy, Division of Gastro-enterology, Department of Medicine, Stord Hospital, Box 4000, 5416 Stord, Norway, E-mail: magdy.el-salhy@ 123456helse-fonna.no
                Article
                ijmm-40-03-0607
                10.3892/ijmm.2017.3072
                5548066
                28731144
                b7c45837-fff1-4632-82db-775ad6a1d40f
                Copyright: © El-Salhy et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 March 2017
                : 09 June 2017
                Categories
                Articles

                microbiota,enteric nervous system,fermentation,immune system,intestinal endocrine cells,laxation,meteorism,psyllium

                Comments

                Comment on this article