2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multifunctional ferroelectric catalysis for water splitting: classification, synergism, strategies and challenges

      , , , ,
      Materials Today Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: not found
          • Article: not found

          Electrochemical Photolysis of Water at a Semiconductor Electrode

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photochemical route for synthesizing atomically dispersed palladium catalysts

            Atomically dispersed noble metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low (usually below 0.5%) to avoid the formation of metal nanoparticles through sintering. We report a photochemical strategy to fabricate a stable atomically dispersed palladium-titanium oxide catalyst (Pd1/TiO2) on ethylene glycolate (EG)-stabilized ultrathin TiO2 nanosheets containing Pd up to 1.5%. The Pd1/TiO2 catalyst exhibited high catalytic activity in hydrogenation of C=C bonds, exceeding that of surface Pd atoms on commercial Pd catalysts by a factor of 9. No decay in the activity was observed for 20 cycles. More important, the Pd1/TiO2-EG system could activate H2 in a heterolytic pathway, leading to a catalytic enhancement in hydrogenation of aldehydes by a factor of more than 55.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Photocatalytic water splitting with a quantum efficiency of almost unity

                Bookmark

                Author and article information

                Journal
                Materials Today Chemistry
                Materials Today Chemistry
                Elsevier BV
                24685194
                June 2023
                June 2023
                : 30
                : 101486
                Article
                10.1016/j.mtchem.2023.101486
                b846e61e-71a1-4f16-96f7-ce875df62482
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article