5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering the Plant Secretory Pathway for the Production of Next-Generation Pharmaceuticals

      , , , , ,
      Trends in Biotechnology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Protein posttranslational modifications: the chemistry of proteome diversifications.

          The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Plant protein glycosylation

            Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.

              Using a pulse-chase approach combined with immunoprecipitation, we showed that newly synthesized influenza virus hemagglutinin (HA) and vesicular stomatitis virus G protein associate transiently during their folding with calnexin, a membrane-bound endoplasmic reticulum (ER) chaperone. Inhibitors of N-linked glycosylation (tunicamycin) and glucosidases I and II (castanospermine and 1-deoxynojirimycin) prevented the association, whereas inhibitors of ER alpha-mannosidases did not. Our results indicated that binding of these viral glycoproteins to calnexin correlated closely with the composition of their N-linked oligosaccharide side chains. Proteins with monoglucosylated oligosaccharides were the most likely binding species. On the basis of our data and existing information concerning the role of monoglucosylated oligosaccharides on glycoproteins, we propose that the ER contains a unique folding and quality control machinery in which calnexin acts as a chaperone that binds proteins with partially glucose-trimmed carbohydrate side chains. In this model glucosidases I and II serve as signal modifiers and UDP-glucose:glycoprotein glucosyltransferase, as a folding sensor.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Trends in Biotechnology
                Trends in Biotechnology
                Elsevier BV
                01677799
                September 2020
                September 2020
                : 38
                : 9
                : 1034-1044
                Article
                10.1016/j.tibtech.2020.03.004
                32818443
                b87d4299-db43-4b5a-9d60-735e846728d8
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article