2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liver and Kidney Function Biomarkers, Blood Cell Traits and Risk of Severe COVID-19: A Mendelian Randomization Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pandemic of Coronavirus disease 2019 (COVID-19) has posed an enormous threat to human health. According to observational studies, abnormal liver and kidney functions and blood cell traits were associated with severe COVID-19, yet the causal risk factors for COVID-19 severity and the underlying mechanism remained elusive. We performed Mendelian randomization analyses to assess the potential causal role of eight liver function biomarkers, one kidney function biomarker, and 14 hematological traits on COVID-19 severity using genetic association summary statistics from Europeans. Our findings showed that albumin, direct bilirubin, white blood cell count, neutrophil count, lymphocyte count, and mean corpuscular hemoglobin are casually associated with the risk of severe COVID-19. Notably, lymphocyte count and mean corpuscular hemoglobin had an independent effect on severe COVID-19 risk. These causal evidences provide insights into directions for the risk stratification of individuals with abnormal liver function or blood cell indices and motivate more studies to unveil the roles of these abnormalities in COVID-19 pathogenesis.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A global reference for human genetic variation

          The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Second-generation PLINK: rising to the challenge of larger and richer datasets

            PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The UK Biobank resource with deep phenotyping and genomic data

              The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                27 May 2021
                2021
                27 May 2021
                : 12
                : 647303
                Affiliations
                Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
                Author notes

                Edited by: Laura Portas, Imperial College London, United Kingdom

                Reviewed by: Diana A. van der Plaat, Imperial College London, United Kingdom; Giovanni Malerba, University of Verona, Italy

                *Correspondence: Shanshan Cheng, sscheng@ 123456hust.edu.cn

                These authors share first authorship

                This article was submitted to Applied Genetic Epidemiology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2021.647303
                8191502
                34122505
                b8a74206-bf8c-49bd-a840-fd6d55d4ff8c
                Copyright © 2021 Wang, Qu, Ding, Shi, Wang, Cheng and Hao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2020
                : 29 April 2021
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 32, Pages: 8, Words: 0
                Categories
                Genetics
                Original Research

                Genetics
                white blood cells,mean corpuscular hemoglobin,covid-19,risk factors,mendelian randomization

                Comments

                Comment on this article