Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Solvent-Assisted Paper Spray Ionization Mass Spectrometry (SAPSI-MS) for the Analysis of Biomolecules and Biofluids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paper Spray Ionization (PSI) is commonly applied for the analysis of small molecules, including drugs, metabolites, and pesticides in biological fluids, due to its high versatility, simplicity, and low costs. In this study, a new setup called Solvent Assisted Paper Spray Ionization (SAPSI), able to increase data acquisition time, signal stability, and repeatability, is proposed to overcome common PSI drawbacks. The setup relies on an integrated solution to provide ionization potential and constant solvent flow to the paper tip. Specifically, the ion source was connected to the instrument fluidics along with the voltage supply systems, ensuring a close control over the ionization conditions. SAPSI was successfully applied for the analysis of different classes of biomolecules: amyloidogenic peptides, proteins, and N-glycans. The prolonged analysis time allowed real-time monitoring of processes taking places on the paper tip, such as amyloid peptides aggregation and disaggregation phenomena. The enhanced signal stability allowed to discriminate protein species characterized by different post translational modifications and adducts with electrophilic compounds, both in aqueous solutions and in biofluids, such as serum and cerebrospinal fluid, without any sample pretreatment. In the next future, application to clinical relevant modifications, could lead to the development of quick and cost-effective diagnostic tools.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans.

          Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease.

            In recent years, small protein oligomers have been implicated in the aetiology of a number of important amyloid diseases, such as type 2 diabetes, Parkinson's disease and Alzheimer's disease. As a consequence, research efforts are being directed away from traditional targets, such as amyloid plaques, and towards characterization of early oligomer states. Here we present a new analysis method, ion mobility coupled with mass spectrometry, for this challenging problem, which allows determination of in vitro oligomer distributions and the qualitative structure of each of the aggregates. We applied these methods to a number of the amyloid-β protein isoforms of Aβ40 and Aβ42 and showed that their oligomer-size distributions are very different. Our results are consistent with previous observations that Aβ40 and Aβ42 self-assemble via different pathways and provide a candidate in the Aβ42 dodecamer for the primary toxic species in Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology.

              Collision cross sections in both helium and nitrogen gases were measured directly using a drift cell with RF ion confinement inserted within a quadrupole/ion mobility/time-of-flight hybrid mass spectrometer (Waters Synapt HDMS, Manchester, U.K.). Collision cross sections for a large set of denatured peptide, denatured protein, native-like protein, and native-like protein complex ions are reported here, forming a database of collision cross sections that spans over 2 orders of magnitude. The average effective density of the native-like ions is 0.6 g cm(-3), which is significantly lower than that for the solvent-excluded regions of proteins and suggests that these ions can retain significant memory of their solution-phase structures rather than collapse to globular structures. Because the measurements are acquired using an instrument that mimics the geometry of the commercial Synapt HDMS instrument, this database enables the determination of highly accurate collision cross sections from traveling-wave ion mobility data through the use of calibration standards with similar masses and mobilities. Errors in traveling-wave collision cross sections determined for native-like protein complexes calibrated using other native-like protein complexes are significantly less than those calibrated using denatured proteins. This database indicates that collision cross sections in both helium and nitrogen gases can be well-correlated for larger biomolecular ions, but non-correlated differences for smaller ions can be more significant. These results enable the generation of more accurate three-dimensional models of protein and other biomolecular complexes using gas-phase structural biology techniques.
                Bookmark

                Author and article information

                Contributors
                leopold.ilag@aces.su.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                16 July 2019
                16 July 2019
                2019
                : 9
                : 10296
                Affiliations
                [1 ]ISNI 0000 0004 1936 9377, GRID grid.10548.38, Department of Environmental Science and Analytical Chemistry, , Stockholm University, ; Stockholm, SE Sweden
                [2 ]ISNI 0000 0004 1936 9377, GRID grid.10548.38, Department of Biochemistry and Biophysics, , Stockholm University, ; Stockholm, SE Sweden
                [3 ]ISNI 0000 0004 1758 0937, GRID grid.10383.39, Department of Chemistry, , Life Sciences, and Environmental Sustainability, University of Parma, ; Parma, IT Italy
                Article
                45358
                10.1038/s41598-019-45358-x
                6635430
                31311939
                b8e46726-2188-4c60-bedf-5d70de15bb06
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2019
                : 24 May 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                mass spectrometry,bioanalytical chemistry
                Uncategorized
                mass spectrometry, bioanalytical chemistry

                Comments

                Comment on this article