6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The insights into molecular pathways of hypoxia‐inducible factor in the brain

      1 , 2
      Journal of Neuroscience Research
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d9033004e67">The objectives of this present work were to review recent developments on the role of hypoxia-inducible factor (HIF) in the survival of cells under normoxic versus hypoxic and inflammatory brain conditions. The dual nature of HIF effects appears well established, based on the accumulated evidence of HIF playing both the role of adaptive factor and mediator of cell demise. Cellular HIF responses depend on pathophysiological conditions, developmental phase, comorbidities, and administered medications. In addition, HIF-1α and HIF-2α actions may vary in the same tissues. The multiple roles of HIF in stem cells are emerging. HIF not only regulates expression of target genes and thereby influences resultant protein levels but also contributes to epigenetic changes that may reciprocally provide feedback regulations loops. These HIF-dependent alterations in neurological diseases and its responses to treatments in vivo need to be examined alongside with a functional status of subjects involved in such studies. The knowledge of HIF pathways might be helpful in devising HIF-mimetics and modulating drugs, acting on the molecular level to improve clinical outcomes, as exemplified here by clinical and experimental data of selected brain diseases, occasionally corroborated by the data from disorders of other organs. Because of complex role of HIF in brain injuries, prospective therapeutic interventions need to differentially target HIF responses depending on their roles in the molecular mechanisms of neurologic diseases. </p>

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network.

          The PGC-1 family of regulated coactivators, consisting of PGC-1α, PGC-1β and PRC, plays a central role in a regulatory network governing the transcriptional control of mitochondrial biogenesis and respiratory function. These coactivators target multiple transcription factors including NRF-1, NRF-2 and the orphan nuclear hormone receptor, ERRα, among others. In addition, they themselves are the targets of coactivator and co-repressor complexes that regulate gene expression through chromatin remodeling. The expression of PGC-1 family members is modulated by extracellular signals controlling metabolism, differentiation or cell growth and in some cases their activities are known to be regulated by post-translational modification by the energy sensors, AMPK and SIRT1. Recent gene knockout and silencing studies of many members of the PGC-1 network have revealed phenotypes of wide ranging severity suggestive of complex compensatory interactions or broadly integrative functions that are not exclusive to mitochondrial biogenesis. The results point to a central role for the PGC-1 family in integrating mitochondrial biogenesis and energy production with many diverse cellular functions. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-1 at the crossroads of hypoxia, inflammation, and cancer.

            The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth.

              The division, differentiation, and function of stem cells and multipotent progenitors are influenced by complex signals in the microenvironment, including oxygen availability. Using a genetic "knock-in" strategy, we demonstrate that targeted replacement of the oxygen-regulated transcription factor HIF-1alpha with HIF-2alpha results in expanded expression of HIF-2alpha-specific target genes including Oct-4, a transcription factor essential for maintaining stem cell pluripotency. We show that HIF-2alpha, but not HIF-1alpha, binds to the Oct-4 promoter and induces Oct-4 expression and transcriptional activity, thereby contributing to impaired development in homozygous Hif-2alpha KI/KI embryos, defective hematopoietic stem cell differentiation in embryoid bodies, and large embryonic stem cell (ES)-derived tumors characterized by altered cellular differentiation. Furthermore, loss of HIF-2alpha severely reduces the number of embryonic primordial germ cells, which require Oct-4 expression for survival and/or maintenance. These results identify Oct-4 as a HIF-2alpha-specific target gene and indicate that HIF-2alpha can regulate stem cell function and/or differentiation through activation of Oct-4, which in turn contributes to HIF-2alpha's tumor promoting activity.
                Bookmark

                Author and article information

                Journal
                Journal of Neuroscience Research
                J Neuro Res
                Wiley
                0360-4012
                1097-4547
                December 12 2018
                December 12 2018
                Affiliations
                [1 ]Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre Polish Academy of Sciences Warsaw Poland
                [2 ]Departments of Anesthesiology and Physiology, School of Medicine Loma Linda University Loma Linda California
                Article
                10.1002/jnr.24366
                30548473
                b9353a47-77ca-4b7a-9bee-d503fb95f0f8
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article