39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Gastric cancer is the fifth most common cancer and the third cause of cancer death. The clinical outcomes of the patients are still not encouraging with a low rate of 5 years' survival. Often the disease is diagnosed at advanced stages and this obviously negatively affects patients outcomes. A deep understanding of molecular basis of gastric cancer can lead to the identification of diagnostic, predictive, prognostic, and therapeutic biomarkers.

          Main Body

          This paper aims to give a global view on the molecular classification and mechanisms involved in the development of the tumour and on the biomarkers for gastric cancer. We discuss the role of E-cadherin, HER2, fibroblast growth factor receptor (FGFR), MET, human epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (HGFR), mammalian target of rapamycin (mTOR), microsatellite instability (MSI), PD-L1, and TP53. We have also considered in this manuscript new emerging biomarkers as matrix metalloproteases (MMPs), microRNAs, and long noncoding RNAs (lncRNAs).

          Conclusions

          Identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers will have a huge impact on patients outcomes as they will allow early detection of tumours and also guide the choice of a targeted therapy based on specific molecular features of the cancer.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Mutation and cancer: statistical study of retinoblastoma.

          A Knudson (1971)
          Based upon observations on 48 cases of retinoblastoma and published reports, the hypothesis is developed that retinoblastoma is a cancer caused by two mutational events. In the dominantly inherited form, one mutation is inherited via the germinal cells and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells. The second mutation produces an average of three retinoblastomas per individual inheriting the first mutation. Using Poisson statistics, one can calculate that this number (three) can explain the occasional gene carrier who gets no tumor, those who develop only unilateral tumors, and those who develop bilateral tumors, as well as explaining instances of multiple tumors in one eye. This value for the mean number of tumors occurring in genetic carriers may be used to estimate the mutation rate for each mutation. The germinal and somatic rates for the first, and the somatic rate for the second, mutation, are approximately equal. The germinal mutation may arise in some instances from a delayed mutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two genetic hits (more or less) to cancer.

            A Knudson (2001)
            Most cancers have many chromosomal abnormalities, both in number and in structure, whereas some show only a single aberration. In the era before molecular biology, cancer researchers, studying both human and animal cancers, proposed that a small number of events was needed for carcinogenesis. Evidence from the recent molecular era also indicates that cancers can arise from small numbers of events that affect common cell birth and death processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab.

              HER-2/neu gene amplification has predictive value in breast cancer patients responding to trastuzumab. We wanted to investigate the frequency and clinical significance of HER-2/neu amplification in gastric carcinoma. The frequency of HER-2/neu and Topoisomerase IIalpha gene amplification was studied in adenocarcinomas of the stomach (n=131) and the gastroesophageal junction (n=100) by chromogenic in situ hybridization (CISH). Sensitivity of a gastric cancer cell line N87 with HER-2/neu amplification to trastuzumab was studied by a cell viability assay and compared with that of a HER-2 amplified breast cancer cell line SKBR-3. Growth inhibition of N87 cells was also verified in vivo in N87 xenograft tumors. HER-2/neu amplification was present in 16 (12.2%) of the 131 gastric and in 24 (24.0%) of the 100 gastroesophageal adenocarcinomas. Co-amplification of Topoisomerase IIalpha was present in the majority of gastric (63%) and esophagogastric junction cancers (68%) with HER-2/neu amplification. HER-2/neu amplification was more common in the intestinal histologic type of gastric cancer (21.5%) than in the diffuse (2%) or the mixed/anaplastic type (5%, P=0.0051), but it was not associated with gender, age at diagnosis or clinical stage. Presence of HER-2/neu amplification was associated with poor carcinoma-specific survival (P=0.0089). HER-2/neu targeting antibody trastuzumab inhibited the growth of a p185(HER-2/neu) overexpressing gastric and breast carcinoma cell lines (N87 and SKBR-3) with equal efficacy. HER-2/neu amplification is common in the intestinal type of gastric carcinoma, and it is associated with a poor outcome. HER-2 might be a useful target in this disease, and this hypothesis deserves to be investigated in clinical trials.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2017
                28 September 2017
                : 2017
                : 7869802
                Affiliations
                1Department of Advanced Biomedical Science, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
                2Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
                Author notes

                Academic Editor: Valeria Barresi

                Author information
                http://orcid.org/0000-0002-9837-5809
                http://orcid.org/0000-0001-5116-1451
                http://orcid.org/0000-0003-4512-4579
                http://orcid.org/0000-0002-5379-1104
                http://orcid.org/0000-0003-1339-9228
                http://orcid.org/0000-0003-3046-9988
                Article
                10.1155/2017/7869802
                5637861
                29094049
                b98f622b-2a6d-4c51-ba41-2db955eca678
                Copyright © 2017 Nicola Carlomagno et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 April 2017
                : 12 July 2017
                Categories
                Review Article

                Comments

                Comment on this article