26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global research priorities to mitigate plastic pollution impacts on marine wildlife

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Transport and release of chemicals from plastics to the environment and to wildlife.

          Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

            Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.

              Plastic resin pellets (small granules 0.1-0.5 centimeters in diameter) are widely distributed in the ocean all over the world. They are an industrial raw material for the plastic industry and are unintentionally released to the environment both during manufacturing and transport. They are sometimes ingested by seabirds and other marine organisms, and their adverse effects on organisms are a concern. In the present study, PCBs, DDE, and nonylphenols (NP) were detected in polypropylene (PP) resin pellets collected from four Japanese coasts. Concentrations of PCBs (4-117 ng/g), DDE (0.16-3.1 ng/g), and NP (0.13-16 microg/g) varied among the sampling sites. These concentrations were comparable to those for suspended particles and bottom sediments collected from the same area as the pellets. Field adsorption experiments using PP virgin pellets demonstrated significant and steady increase in PCBs and DDE concentrations throughout the six-day experiment, indicating that the source of PCBs and DDE is ambient seawater and that adsorption to pellet surfaces is the mechanism of enrichment. The major source of NP in the marine PP resin pellets was thought to be plastic additives and/or their degradation products. Comparison of PCBs and DDE concentrations in mari
                Bookmark

                Author and article information

                Journal
                Endangered Species Research
                Endang. Species. Res.
                Inter-Research Science Center
                1863-5407
                1613-4796
                October 17 2014
                October 17 2014
                : 25
                : 3
                : 225-247
                Article
                10.3354/esr00623
                b9958532-d74d-4e34-ad36-db6ba54b6654
                © 2014
                History

                Comments

                Comment on this article