1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Research Progress of Graphene-Based Flexible Humidity Sensor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene is a new type of carbon material with a flexible, two-dimensional structure. Due to the excellent stability of its lattice structure and its mechanical flexibility, graphene-based materials can be applied in flexible humidity sensors. At present, the application of graphene-based flexible humidity sensors in the fields of medical care and environmental monitoring is attracting widespread attention. In this review, the basic properties of graphene oxide (GO) and reduced graphene oxide (rGO) as moisture-sensitive materials and methods for their preparation were introduced. Moreover, three methods for improving the performance of moisture-sensitive materials were discussed. The working principle of different types of graphene-based humidity sensors were introduced. The progress in the research on graphene-based flexible humidity sensors in four respects: Human respiration, skin moisture, human sweat, and environmental humidity were discussed. Finally, the future research, following the development trends and challenges, to develop the potential of integrated, graphene-based flexible humidity sensors were discussed.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preparation of Graphitic Oxide

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved synthesis of graphene oxide.

              An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers' method (KMnO(4), NaNO(3), H(2)SO(4)) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers' method or Hummers' method with additional KMnO(4). Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers' method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers' method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the construction of devices composed of the subsequent CCG.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                30 September 2020
                October 2020
                : 20
                : 19
                : 5601
                Affiliations
                [1 ]College of Engineering, South China Agricultural University, Guangzhou 510642, China; samleung@ 123456stu.scau.edu.cn (R.L.); anshengluo@ 123456stu.scau.edu.cn (A.L.); zhenbangzhang@ 123456stu.scau.edu.cn (Z.Z.); 1374487865@ 123456stu.scau.edu.cn (Z.L.); 201619030305@ 123456stu.scau.edu.cn (C.H.)
                [2 ]Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
                Author notes
                [* ]Correspondence: wuweibin@ 123456scau.edu.cn
                [†]

                These two authors are co-first author.

                Article
                sensors-20-05601
                10.3390/s20195601
                7582584
                33007834
                b99bfcc3-2224-407b-908a-2fc68e06e51b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 July 2020
                : 26 September 2020
                Categories
                Article

                Biomedical engineering
                graphene oxide,flexible,humidity sensors,respiratory monitoring
                Biomedical engineering
                graphene oxide, flexible, humidity sensors, respiratory monitoring

                Comments

                Comment on this article