5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macular vessel density before and after panretinal photocoagulation in patients with proliferative diabetic retinopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Diabetic retinopathy (DR) is microangiopathy causing ischemia leading to proliferative diabetic retinopathy and macular edema. Panretinal photocoagulation (PRP) reverses the ischemia leading to regression of neovessels. Most previous studies showed the large vessel effects of PRP, while optical coherence tomography angiography (OCTA) allowed noninvasive quantification of microvascular retinal changes.

          Aim

          To study the effect of PRP on microvascular retinal vessels in a detailed manner at different retinal and choroidal levels using OCTA.

          Patients and methods

          This study was a prospective interventional study. 30 eyes of 18 diabetic patients with PDR were included. All patients were evaluated clinically and with OCTA (Avanti RTVue-XR system, Optovue) to evaluate superficial and deep vessels density (VDs), choroidal flow, and FAZ area before PRP (base line) and 1 month and 6 months after PRP.

          Results

          PRP improved vessels density at superficial (SCP), deep (DCP), and choriocapillaris levels. Foveal vessel density at SCP and DCP were statistically significantly increased. SCP was 28.76 ± 2.56 at base line and was increased to 29.84 ± 2.47 and 30.89 ± 2.20 after 1 month and after 6 months, respectively. DCP was 34.08 ± 5.59 at base line and was increased to 34.93 ± 5.66 and 36.09 ± 5.62 after 1 month and after 6 months, respectively. Foveal choriocapillaris was statistically significantly increased from 63.04 ± 2.66 at base line to 63.48 ± 2.65 and 63.98 ± 2.78 after 1 month and 6 months, respectively. Choroidal flow was increased from 1.74 ± 0.07 at base line to 1.75 ± 0.09 at 1 month which was nonsignificant (P = 0.72), but it was significantly increased to 1.87 ± 0.27 6 months after PRP (P = 0.009). FAZ area was significantly improved after PRP. FAZ area was decreased from 0.56 ± 0.27 at base line to 0.50 ± 0.21 after 1 month and to 0.46 ± 0.21 after 6 months.

          Conclusion

          OCTA parameters were significantly improved by PRP in PDR patients, possibly due to redistribution of blood in occluded capillary plexuses.

          Trials registry: NCT04976361.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          WITHDRAWN: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition

          To provide global estimates of diabetes prevalence for 2019 and projections for 2030 and 2045.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss

            Diabetic retinopathy (DR) is a leading cause of vision-loss globally. Of an estimated 285 million people with diabetes mellitus worldwide, approximately one third have signs of DR and of these, a further one third of DR is vision-threatening DR, including diabetic macular edema (DME). The identification of established modifiable risk factors for DR such as hyperglycemia and hypertension has provided the basis for risk factor control in preventing onset and progression of DR. Additional research investigating novel risk factors has improved our understanding of multiple biological pathways involved in the pathogenesis of DR and DME, especially those involved in inflammation and oxidative stress. Variations in DR prevalence between populations have also sparked interest in genetic studies to identify loci associated with disease susceptibility. In this review, major trends in the prevalence, incidence, progression and regression of DR and DME are explored, and gaps in literature identified. Established and novel risk factors are also extensively reviewed with a focus on landmark studies and updates from the recent literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.

              The retinal vasculature is involved in many ocular diseases that cause visual loss. Although fluorescein angiography is the criterion standard for evaluating the retina vasculature, it has risks of adverse effects and known defects in imaging all the layers of the retinal vasculature. Optical coherence tomography (OCT) angiography can image vessels based on flow characteristics and may provide improved information.
                Bookmark

                Author and article information

                Contributors
                Ahmed.abdelhaleem1@mu.edu.eg
                mohamed.osman@mu.edu.eg
                mohamed_zaki@mu.edu.eg
                asmaa.anwar@mu.edu.eg , asmaaoribey@yahoo.com
                Journal
                Int J Retina Vitreous
                Int J Retina Vitreous
                International Journal of Retina and Vitreous
                BioMed Central (London )
                2056-9920
                14 March 2022
                14 March 2022
                2022
                : 8
                : 21
                Affiliations
                GRID grid.411806.a, ISNI 0000 0000 8999 4945, Ophthalmology Department, Faculty of Medicine, , Minia University Hospital, Minia University, ; El-Minia, 61519 Egypt
                Author information
                http://orcid.org/0000-0001-7688-8139
                http://orcid.org/0000-0002-2836-5314
                Article
                369
                10.1186/s40942-022-00369-1
                8919564
                35287760
                b9c534f4-84fb-4aa7-a9b4-3a9b1201b33c
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 October 2021
                : 23 February 2022
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2022

                octa,panretinal photocoagulation,macular vessel density,pdr

                Comments

                Comment on this article